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Background

Despite the fundamental role that the oceans of Earth play in marine life, climate
control, commerce and so forth, they remain poorly mapped. Although large-scale
mapping tools, mainly satellite altimetry, are being used to generate global
bathymetry, they have limited spatial resolution on the order of 1 km at best and
therefore cannot identify smaller structures and features. The finer detailed
bathymetry, which is vital, for example, to the study of active faults, glacial landforms
and benthic habitats is very lacking. It is estimated that less than 18% of the oceans
floor had been measured with small-scale tools such as echo sounding and Lidar,
while about half of that area was mapped by extrapolation based on few
measurements points, questioning its reliability (Mayer et al., 2018).

This situation describes both the deep and the shallow areas of the large bodies of
water of Earth, each with its unique challenges for mapping and measuring their
depths. The estimations for the current state of ocean floor mapping puts the areas
shallower than 200 m depth at 71% uncharted and the deeper areas at 66-85%
uncharted. Of these two areas, the shallows present the heavier investment in terms
of survey effort required due to the limitations of the sounding tools near the shore
(Mayer et al., 2018).

The improvement in computational power in recent years combined with a rise in the
availability of publicly open satellite imagery facilitate the implementation of various
research tools such as Satellite Derived Bathymetry (SDB). This tool offers the
possibility of generating shallow-water bathymetry with lower costs and risks as
compared to classical, direct measurement methods (Pe’eri et al., 2014).
Additionally, SDB has the potential of generating navigation quality charts as its
accuracy can reach the standards of the IHO (IHO, 2014; Pe’eri et al., 2014; Chénier
et al., 2018).

Relying mainly on optic remote sensing technology, SDB is limited to the photic
zone, i.e., maximum depths of 200 m, which roughly represents 7% of Earth’s
oceans area. (Mayer et al., 2018). This depth is considered a theoretical maximum,
while in practice the depths are typically limited to optically shallow waters,
approximatively one Secchi depth (Jegat et al., 2016). This suggests an average
maximum of about 30 m depth (Pe’eri et al., 2014; Chénier et al., 2018; Kabiri, 2017,



Caballero & Stumpf, 2019) in non-turbid, oligotrophic waters, representing roughly
2% of Earth’s oceans area (Fig. 1). In practice this percentage will be lower since
large areas of the oceans tend towards the eutrophic state (Morel et al., 2010), thus
limiting the potential penetration of light. Nevertheless, the shallows represent a
highly dynamic environment (Chénier et al., 2018) whose research can benefit from

satellite monitoring methods.
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Figure1 : A general model of the shallow areas of Earth oceans. The depths reaching 30 m occupy about 8,000,000 km?,
being roughly 2% of the surface area of the oceans — about 360,000,000 km? (Mayer et all., 2018; Eakings & Sharman,
2012)

The SDB method which | set to improve within this study is mainly a slow, manual
process that relies on in-situ measurements for calibration. | automated the process
in a script-based way while also exploring a new calibration technique derived from
near-shore tidal amplitudes. This automated process may facilitate the generation of

SDB for the purposes of area monitoring and future survey planning.



Research Objectives

While Satellite Derived Bathymetry (SDB) has been implemented in several studies
and over several areas in recent years (Caballero & Stumpf, 2019), it remains mainly
a slow and manual process (IHO-IOC GEBCO Cook Book, 2015), not suitable for
large scale mapping. In this study | improved the SDB method by turning it into an
automatic tool and used it to generate a bathymetry layer (a geographic dataset
used in GIS software) for the shallows in the various research areas. These
bathymetry layers were calibrated, i.e., transformed into meaningful depth data,
using two different methods: by using direct, in-situ measurements of depth or by
using estimations that are derived from tidal amplitudes and difference in the location

of the shorelines.

This study was divided into two stages:

Stage 1:

Automating the SDB process by scripting the existing manual work process. | found
alternative solutions to parts of the process which could not be directly automated,
such as visually detecting a threshold value to distinguish between land and water,
as well as choosing the best satellite scene by applying error estimations during the

process and not relying on visually pre-selecting the best scene.

Stage 2:

Part A: The automated process was used for generating a bathymetry layer for four
study areas in the Red Sea & the Persian Gulf (Fig. 2) for which | had reliable in-situ
depth measurements. These bathymetry layers were generated while testing several

calibration methods.
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Figure2 : The study areas used in part A of Stage 2 for testing several SDB calibration methods.

Part B: | introduced a novel, tidal-based method for calibrating SDB without relying

on in-situ data. This method was tested in the Bay of Fundy in Canada and near
Broome, Australia (Fig. 3) — areas which offer a large differential tidal amplitude.
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Figure3 : The study areas (mark as a red rectangle) used in part B of Stage 2 for testing a novel tidal-based
calibration method: The Bay of Fundy (above) and Broome, Australia (below).
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Methods

The SDB Algorithm

The radiance observed by a remote detector over any shallow-water location can be
generally described with a simple model (Lyzenga, 1978; Philpot, 1989):

(1) Lops = Lbe_kz + Ly

Where Lobs is the observed reflectance, z is the depth, Lw is the reflectance over
deep water (z —» »), k is an attenuation coefficient and Ly is the radiance term which
is sensitive to bottom reflectance. The last two variables represent the effect of
several environmental conditions, such as atmospheric transmittance, solar
irradiance and bottom albedo.

The correlation between the depth and the observed reflectance can be calculated
using two SDB approaches: The physical approach and the empirical approach. In
the physical approach the different environmental conditions are measured or
estimated and are used as parameters in a series of equations that correlate the
depth to the observed reflectance (Dekker et al., 2011). In the empirical approach,
which was used in this study, the observed reflectance is calibrated with depth
measurements from the study area. To minimize the effects of the environmental
conditions, a log-ratio model was used. This model assumes that in a uniformly
mixed water column the ratio of two bands will have a near-constant attenuation
value since both bands will be affected by the same environmental factors (Stumpf et
al., 2003; Pe’eri et al., 2014), thus the log-ratio (R) of the light observed within the
two bands (A, A)) is proportional to the depth:

In (Lops(2)))
2 R = —-—
( ) In (Lops(1))

@) z=f(R)



The model shows a linear relationship (the function f) between in-situ depth
measurements and the log-ratio. Both of the linear parameters — the gain (m1) and

the offset (mo) — can be empirically determined by (Pe’eri et al., 2014):

(4) z=mR +m,

This linear relationship occurs only in optically clear shallow water. In deeper water
the observed radiance originates from light scattering within the water column with a
minimal-to-non-existing contribution from the bottom reflectance. Thus, a depth of
extinction should be determined which will represent the maximum valid depth
observable within the model for each specific sensor scene.

In this research | used the log-ratio between the blue (450-510 nm) and green
wavelengths (530-590 nm) as suggested by Stumpf et al. (2003) for the minimization

of the environmental effects (Pe’eri et al., 2014).

Satellites Images used in the Study

The input imagery used as a source for the SDB was the Blue, Green and
Shortwave-Infrared (SWIR) bands from the OLI sensor in the USGS Landsat 8
platform (bands 2,3 and 6, respectively — see Table 1). Each of these bands has a
spatial resolution of 30m and is referenced to the Universal Transverse Mercator
projection using the WGS84 datum.

Band Spectral Range [um]  Spatial Resolution
2 — Blue 0.452-0.512 30m
3 — Green 0.533-0.590 30 m
6 — Shortwave Infrared (SWIR) 1.566-1.651 30m

Table? : Spectral bands used in this study

The Landsat 8 mission follows the coordinate system of the World Reference
System 2 (WRS-2) that divides the globes into a sequence of paths and rows so that
every image is assigned to a path/row couple, with some overlapping areas. The
satellite revisits each path/row every 16 days, adding to an increasing archive of

images. This large, publicly available, archive of Landsat 8 images enabled me to



focus on scenes with higher quality by using exclusively the Tier-1 data products.
This data tier ensures a maximum of 3% in absolute radiometric uncertainty, an
average of 0.09% in temporal uncertainty and an absolute geodetic accuracy better
than 12m circular error at 90% confidence (USGS, 2019). Moreover, in each study
area | selected only the images with less than 0.1% cloud coverage in order to
minimize the need for cloud correction steps in the process. While this reduced the
number of available scenes for each study area by 90-95%, the large Landsat 8

archive offered nonetheless a seemingly sufficient number of images.

The pixel values in the Landsat 8 bands used in this study represent the amount of
light reaching the sensor (Top-of-Atmosphere, or ToA, reflectance). In order to
reduce the bandwidth and amount of storage required for saving this data, the ToA
reflectance in the Landsat 8 mission is converted and saved in the final product as
integers of dimensionless, 16-bit digital numbers (DN), with a range between 0 and
65,536. These DN have a linear correlation to the ToA reflectance, by which pixels of
higher values represent areas that reflect more light back at the sensor compared to

areas with low pixel values (Fig. 4).

Each Landsat 8 image is contained within a rectangle with dimensions of 7581 pixels
wide by 7731 pixels high, representing an area of 227 X 232 km. The actual data
that is acquired by the sensor has an area of 190 X 180 km. The containing
rectangle has a constant pixel value of 0 DN that should be taken into consideration

in the image processing.



Figure4 : Comparison of the Blue band (left) and Shortwave Infrared (SWIR) band (right) of Landsat 8, around the Gulf of
Eilat (the Gulf of Aqaba). The bounding box is clearly visible (black color = pixel value of 0 DN) as well as the difference in the
amount of light absorbed by the water. Since darker pixels mean less light reaching the sensor, we can clearly see how in
the SWIR band the sea absorbs significantly more light than the same area in the blue wavelengths.

Tools used in the study

An effort was made throughout the study to ensure that | used only open sourced,
cross platformed, publicly available software and data. This should facilitate others to
use our techniques without having to adjust or re-write parts of the code.

Python 3.x was chosen as the main scripting language, coupled with several external
Python modules for specific tasks. These include Requests (© Kenneth Reitz 2019)
for HTTP communication, Numpy (Van der Walt, 2011) for numerical computation,
Scipy (Millman & Aivazis, 2011) for image filtering and simple linear regression,
Pandas (McKinney, 2010) for structuring data, scikit-image (Van der Walt, 2014) for
image processing, scikit-learn (Pedregosa, 2011) for calibrations and linear
regression, Matplotlib (Hunter, 2007) for plotting, Rasterio (©MapBox 2016) for
GeoTIFF processing, tqdm (da Costa-Luis, 2019) for progress monitoring and pyproj
(© Jeffrey Whitaker 2019) for handling reprojections of geographic datasets.

The GIS software used early in the study were ArcGIS Pro 2.x and Global Mapper
14. In the later stages of the study | switched to QGIS 3.x, an open source GIS.
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Sources for depth data

The ground truth data on which the calibrations were based was taken from the work
of Dr. Hall (Hall, 2017). Dr. Hall manually digitized hundreds of nautical charts from
various sources while solving the contradictions that arise from using different
sources at different scales, accuracy and projections. This research used the
relevant digitized nautical charts for the four study areas around the Arabian

Peninsula.

Calibration techniques

After applying the SDB algorithm, a 2-dimensional array (hence: the uncalibrated
array) is generated whose elements represent the quotient of the natural logarithm of
the post-processed Blue and Green pixels. This array contains elements with NULL
(or NoData) values which represent pixels in areas of dry land or in the bounding
box, while the elements which have numeric values represent areas covered in
water. These numeric values are unitless and they typically range between 0.9-1.03,
when values smaller than 1.0 represent shallower areas as they indicate pixels

where the Green wavelength was more absorbed compared to the Blue wavelength.

In order to transform this array into a meaningful bathymetry layer whose elements
have units of depth, | applied a calibration process based on two different methods.

The Traditional Method: Calibrating against measured data

This method, which is well documented in the literature (IHO-IOC GEBCO Cook
Book, 2015; Pe’eri et al., 2014), has a standard work protocol for achieving the
calibration. This protocol consists of sampling the uncalibrated array against existing
in-situ depth measurements, plotting a mean value of the sampling results, visually
detecting a depth of extinction, using a simple linear regression for extracting the
gain and offset parameters and using those values as coefficients for the calibration
of each pixel. I this study | followed the main steps of the protocol while testing new
methods for improving its accuracy. The final protocol that was implemented in this

study had the following steps:

11



. The in-situ depth measurements were loaded into the script as a Pandas data
frame, which included the depth and the coordinates of each measurement.
This data frame was ‘cleaned’ by removing entries such as non-number or
NULL values as well as making sure that the data has only positive numbers.
. The elements of the data frame were re-projected into the same projection as
the original Landsat 8 scenes which were the source of the uncalibrated array.
The re-projection was implemented by using the transform function of the
pyproj module which takes as inputs both relevant projections.

. Each element of the uncalibrated array which had a congruent data frame
element was sampled against it, resulting in a new array (hence: the sampling
array) comprising of coupling of uncalibrated values and depth
measurements.

. A mean function was used on the sampling array, resulting in a series of

discrete depth measurements with a corresponding mean uncalibrated value.

. The series of mean values was then used as the bases for the linear

regression calculations. In a ten permutations repeat process, it was divided
into a training set and a testing test (following the rule-of-thumb of 70%-30%
respectively) and a linear regression model was used to find the scene which
best fits the data in the study area (i.e., the scene that maximized the R?
score).

. Two other linear regression methods were tested on the best scene: Theil—
Sen estimator (Dang et el., 2009), a method that for reducing that effects of
outliers in the X direction (the in-situ depths) and Huber regression (Huber,
1964), a method for reducing the weight of the outliers. These methods were
implemented using the scikit-learn module and were compared against the
simple linear regression of ordinary least squares — the regression most often
used in the literature (Pe’eri et al., 2014; Chénier et al., 2018; Kabiri, 2017).

. The gain and offset parameters were extracted from the linear regression.
These were used as the coefficients for calibrating each pixel of the
uncalibrated array.

The resulting calibrated array was exported into a GeoTIFF as well as a

feature class of linear contours.
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Novel: Tides

In this study | tested a novel method for calibrating SDB in areas for which there

were no in-situ measurements, using data derived from tides.

Tides are generated when there are differential gravitational forces between the
Earth, the Moon and the Sun. These differential forces can be defined as (Hicks,
2006):

(5) D = 26 (252

r3

Where D is the differential forces between the Earth and the Moon, G is the
gravitational constant, M is the mass of the Moon, E is the mass of Earth, p is the
equatorial radius of Earth and r is the distance between the centers of mass of the
Earth and the Moon. Similarly, for the tides generated due to differential forces

between the Earth and the Sun:

(6) D, = +G (ZSEp)

r3

Where Ds is the differential forces between the Earth and the Sun, S is the mass of
the Sun and r is the distance between the centers of mass of the Earth, and the Sun.
The sign of the equation depends on whether this is the side of the Earth facing
towards the Moon or Sun or is it the side facing away. The actual movement of the
bodies of water due to these forces are described as deep ocean wave motion,

where the speed of the propagating wave is given by:

(Me=x
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Where C is the speed of the wave, L is its length and T is the period, i.e., the time
interval between two successive wave crests. In shallow waters, as the wave

propagated towards the shore or into a bay or estuary, its speed is reduced:

®) € =./gh

Where g is the acceleration of gravity and h is the depth. This depth decreases as
the wave approaches the shore, thus reducing C. Since the period of the wave is
constant, the reduction in speed means also a decrease in the wavelength (Eq. 7),
which has an effect of increasing the wave’s amplitude. As tidal waves move into a
bay, they are reflected upon themselves and form a standing wave whose form does
not progress. The characteristics of this standing wave depends mainly on the
characteristics of the estuary as its length determines the wavelength (L, Eq. 7) and
thus the speed and height of the wave. Furthermore, the shape of the estuary also
determines the location of the standing wave’s nodes. i.e., the locations between the
wave’s maximum and minimum. If these nodes are located near the entrance to the
estuary, the near-shore tide will be greatly amplified. While it is possible to predict
the moment and amplitude of an oceanic tidal wave by using Eq. 5 and 6, it is harder
to estimate when the signal of this wave will reach the shore. As stated above, the
speed of the wave changes when it approaches the shore as well as the amplitude.
Moreover, in some bays the furthest shores are separated from the ocean by straits
which slows the wave and affects the location of the nodes. This can be seen, for
example, in the Gulf of Eilat in which the tidal wave traverses over 2,000 km and

passes both Bab el-Mandeb and the Tiran straits before reaching the shore.

The tidal-based calibration process required finding satellite images captured during
high and low tides at the research areas. Since the complicated prediction of
nearshore tidal waves was beyond the scope of this study, | used past tidal
measurements from the governmental agencies of Canada and Australia to find the

parameters required for the calibration.

My aim was to generate an SDB layer describing the depths during mean tide (Zm),
i.e., the depth between high tide (Z:) and low tide (Ze). This was achieved by finding

14



the function (f) that correlates the water depth during high tide at each pixel in the
research area with the log-band ratio calculated for that scene. This function was

assumed to be linear, similar to the model used in the traditional calibration:

(9) f(R) =Z, +aR

Where Zo is the depth at the shoreline and R is the log-band ratio.

The linear regression was calculated on the log-band ratio during high tide (R¢) and it
was based on two data points. The first point was the log-band ratio during high tide
sampled at the specific location used for measuring the water depths, as published

by the governmental agencies. The mean water depth at these locations is given by:

(10) Im =2t — Ze

The second data point was manually sampled by examining the difference in the
shoreline between high and low tides. Since during high tide the shoreline advances
towards the land, there exists some areas that are above water during low tide but
will be covered by water at high tide. The pixels of these areas can be identified in a
scripted method by subtracting the below-water pixels at low tide from their high tide
equivalents, thus generating a raster whose pixels have data only in the high tide
shoreline and NULL values everywhere else. The value of those pixels — the quotient
of the log-band at high tide — were sampled and became the second point for the
linear regression. | then calculated the parameters of this linear regression and used
them as linear coefficients for the calibration of the high tide SDB. From this layer |
subtracted the depth at low tide (Eq. 10) in order to generate an SDB layer
corresponding to the mean tide.

The study areas that were chosen for testing this method have a large tidal
amplitude of 6-10 m, which was assumed to reduce effects of inaccurate
measurements. In these areas there is also a reliable, publicly available source for

tidal measurements.
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The Work Process

The overall work process used for part A and B of stage 2 was divided into several

logical steps, as illustrated in Fig. 7 and detailed below.

Image Acquisition

The data warehouse used in this study was Amazon’s AWS Public Dataset Program,
chosen for its high availably and ease of search and access. Amazon provides a
continuously updated Comma-Separated-Value (CSV) file with a list of all available
scenes, including searchable metadata describing cloud coverage percentage, data
tier level, acquisition time and the scene’s URL which points to list of downloadable

GeoTIFF images representing the different bands of that scene.

In Part A of Stage 2 of the study | identified a path/row for the various study areas.
For each path/row a list of all available, Tier-1 scenes with a maximum cloud
coverage of 0.1% was created from Amazon’s CSV scenes lists. For each scene the
three respective bands were downloaded simultaneously from Amazon’s servers

using the Requests module and utilizing three parallel threads.

In Part B of Stage 2 of the study | selected from Amazon’s CSV scenes lists the
scenes with an acquisition time corresponding to the high and low tides of the study
areas. Similar to part A, the three bands of each scene were downloaded
simultaneously from Amazon’s servers using the Requests module and utilizing

three parallel threads.

Land-water separation

The amount of light absorbed by water depended greatly on its wavelength (Fig. 5).
Water reflects light in the visible spectrum while absorbing infrared light. In the
Landsat 8 Infrared images this is represented by pixels with low DN values over wet

areas, as opposed to higher values over dry land (Fig. 4).
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Figureb : Absorption of light in different wavelengths by water. The minimum of absorption is at the blue and green
wavelengths while the near and mid infra-red are much more absorbed.

| used this fact to perform an automatic thresholding technique for distinguishing
between water and dry land by applying Otsu’s thresholding method (Otsu, 1979) on
band 6 (Table 1). This algorithm exhaustively searches for the threshold value that
maximizes the inter-class pixel value variance of two classes (Fig. 6). Once the
threshold value is found, the image can be binarily spilt, one class representing the
wet areas and the other represents dry land. The pixels of the image that were found
to be parts of the wet areas were used as an image mask for the following steps, so
that no calculations were performed on dry land. Special care was given for the
pixels with a value of 0 DN, since those represent the blocking rectangle and not the

actual image.

This step was implemented using the Rasterio module for reading and writing the
various GeoTIFF images while the binary thresholding and the implementation of
Otsu’s method was done with the scikit-image module. This process improves
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Figure6 : A visualization of Otsu's method for binary thresholding (above). The maximum
value of the variance separates the image into two areas based on the pixel’s values. The
results of implementing this method in the study area near Qatar (below) clearly shows the
separation into two distinct classes with the threshold value found at pixel value of 17,721

DN.
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Image processing

The blue and green bands, which are the components of the SDB algorithm, went

through a series of image processing steps designed to prepare them for the

algorithm’s calculation. These steps included:

Changing the pixel data type from 16-bit integers (i.e., the original DN
values) to 64-bit floating points to ensure minimal data loss in the following
steps as well as to enable registering NULL values.

Applying a low-pass filter to minimize outliers and noise in the data. This
step was implemented using a median filter from the Multidimensional
Image Processing package, a part of the Scipy module. This filter was
calculated upon the surrounding 3x3 neighboring pixels for each pixel in
the image, while a reflecting technique was used for the borders, under the
assumption that the pixels immediately outside the scene’s borders are
very similar to their neighbors inside.

Using the class representing dry areas from the land-water separation
step, the corresponding dry areas in the Blue and Green images were
removed (marked as NULL values with the Numpy module). The resulting
images have pixel values only in areas that were found to belong to the
water class.

The pixels of the containing rectangle, which had a DN value of 0, were
also marked as NULL values.

A natural log was calculated for each pixel using the Numpy module.
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Figure7 : The overall SDB process used in this study, divided into logical steps.

Applying the SDB algorithm

Having two arrays of the water area of the scene, one for the blue wavelength and
one for the green wavelength, with their pixels representing the natural log of the
original DN value (post image processing), the SDB algorithm was calculated as a
simple quotient of the two bands (Eq. 2.), resulting in an array whose shape is the
dimensions of the original scene — 7301 rows and 7271 columns and whose values
are the quotient.

Sampling

In order to sample the in-situ depth data against the results of the SDB algorithm,
i.e., obtain a table consisting of the in-situ depth measurement with the SDB
algorithm pixel value overlapping each specific depth data, both datasets were
required to be in the same coordinate system. While each Landsat 8 scene has a

known projection in the Universal Transverse Mercator projection (using the WGS84
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datum), the in-situ data had different projections as it arrived from different sources.
Thus, in each study area the in-situ data’s projection had to be pre-known and re-
projected to match the projection of the satellite image. This was achieved in two

steps:

1. While opening the SWIR band for the preparation of the Otsu’s thresholding
the coordinate system of the specific scene was registered.

2. When the script reached the sampling part, the in-situ data was re-projected
to the coordinate system from step 1. This was implemented using the pyproj

module which applied an affine transformation.

Once both datasets were in the same coordinate, the sampled table was generated
using the Pandas module.

Calibrating

In order to transform the SDB algorithm into a meaningful depth grid, its pixels
needed to be converted from dimensionless units to units of length (meters). This

transformation was achieved by applying a linear equation on each pixel, so that:

11) d=mp+m,

where d is the pixel in depth units, p is the dimensionless pixel and mi1, mo are the

coefficients that result from the linear regression.

All the available scenes in each study area were linearly fitted against the in-situ
depth data using the ordinary least squares regression method. The scene which
had a maximum R? score was selected as the best scene and was calibrated using
the parameters calculated from the linear regression. That scene was then fitted

against the in-situ data using the different linear regression methods.
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Saving the results

After applying the linear transformation and obtaining an array whose elements have
units of depth, a bathymetry grid was generated. This was achieved with the
Rasterio module in a process whose inputs were the array, the coordinate system of
the original SWIR band and the desired format. All the grids were generated as a
single band GeoTIFF with 32-bit pixels whose values represent the water depth in
meters. A vector GIS file of linear contours was later generated from the GeoTIFF
using a GIS software.
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Results and Discussion

Stage 1: Automating the work process

The manual work protocol was fully automated and replaced with a scripted protocol

(Fig. 7). The difference between the two protocols is summed in Table 2:

Work protocol logical
step

Finding the best scene

Downloading the scene

Extracting the 3 bands
needed for the protocol

Pre-processing (changing
pixel type, low-pass
filtering)

Cloud removal

Manual protocol

Visually selecting the best
scene from the available

scenes in the archives

Manually downloading by

a web browser interface

Un-zipping the
downloaded archive,
deleting the unnecessary
bands

Manually with a GIS

software

With a GIS software
creating polygons that
spends areas with both
clouds and clear sky.
Sampling and applying
linear regression for
removing the clouded

areas.

New, automated
protocol

Working on all the
available Tier-1 scenes,
choosing the best scene
by minimizing the model’s
error

Scripted, multithreaded
downloading through GET
HTTP requests
Downloading only the 3

bands

Using the Python script

Made obsolete by
selecting only scenes with
minimal (less than 0.1%)

cloud coverage
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Work protocol logical
step
Separating land and

water

Applying the SDB
algorithm

Re-projecting the in-situ
depth data to the scene’s
coordinates

Sampling the SDB
algorithm layer against
the depth data

Applying linear
regression, finding the
parameters and depth of
extinction

Generating a bathymetry

grid

Manual protocol

Manually looking for a
threshold value — either
visually or by examining
the histogram of the
image

Manually with a GIS
software

Manually with a GIS
software

Manually with a GIS

software

Manually, usually with
Excel or another
electronic worksheet
software

Manually with a GIS

software

New, automated
protocol

Applying Otsu’s method

for automatic thresholding

Using the Python script

Using the Python script

Using the Python script

Using the Python script

Using the Python script

Table2 : The differences between the original work process and the new process used in this study.
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Stage 2, part A: Generating SDB layers

| applied the scripted work protocol developed in stage 1 in four study areas: The
Gulf of Eilat (Gulf of Agaba); the Dahlak archipelago, Eritrea; Bab el-Mandab straits;

Bahrain and western Qatar (Fig. 8).
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Figure8 : The four study areas used in stage 2, part A: The Gulf of Eilat (1); the Dahlak archipelago, Eritrea (2); Bab el-
Mandab straits (3); Bahrain and western Qatar (4).



The Gulf of Eilat

The Landsat 8 scene that covers the northern area of the Red Sea (path 174, row 40
in the WRS-2 coordinate system) spends over a large area of land and a smaller
area of water (Fig. 9) as the water takes 14% of the total pixels. This area tends to
be less covered in clouds, thus the script had over 60 available scenes with a cloud
coverage of less than 1%. Out of those scenes 8 were chosen for the analysis,

having a cloud coverage of 0.01%.

500p00 60000 ot Fo0pho

® BT T r

3300606

%))

Figure9 : An overview map of the study area at the Gulf of Eilat. The red rectangle indicates the boundaries of the Landsat 8
scene used for the SDB and the letters A-D signify the locations shown in the figures 14-17 respectively.

Two separate datasets were available as the in-situ data points for the calibration
(Fig. 10). One dataset with 27,000 points from the work of Dr. John Hall and another
dataset with 55,000 points generated by eco-sounding sampling made at the Ul in
Eilat. While the first dataset covered the entire scene, its data was inconsistent and
could not be used for SDB. The second dataset was therefore used but since it was
gathered only very close to Eilat it is not clear how well it describes the bathymetry of

the more southern areas.
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Figure10 : The datasets used as in-situ data points for the calibration. The yellow points were the results of the nautical
charts digitization done by John Hall and the red points were generated at the IUI in Eilat by eco-sounding close to shore.
While Hall’s dataset covers the entire scene, it was inconsistent and could not be used for the calibration. On the other
hand, while the data collected at IUI had better quality, it only represents the northern part of the gulf.

The relatively small amount of water pixels challenged the process of thresholding
using Otsu’s method. In Fig. 11 we can see that the first threshold value found by
this method was at 21,757 DN, a value that does not correctly divides the image into
the two classes. Therefore, a second run of the Otsu’s method was executed on the
resulting image. This second run had a thresholding value of 12,998 DN which better
separates the land and water classes.
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Figure11 : The results of Otsu's method for thresholding implemented on the SWIR band at the Gulf of Eilat. Two separate
script runs were needed in this scene as the first run found a threshold value that was not able to accurately divide the
pixels into the two classes of land and water.

The scene which best fitted the in-situ dataset was taken on 10/06/2016. The linear
regression had a R? score of 0.869 at a depth of 13.4 m, while similar R? scores can

be achieved by choosing a depth of extinction of 17 m (Fig. 12).
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Figure12 : An analysis of the changes in R2 score with the increase of the depth of extinction. The best R2 was found at
13.4 m, while higher depths can also be used as a depth of extinction with a relatively high R2 score.

In Fig. 13 we can see the results of the linear regression. Out of the 55,000 in-situ
data points available, 6,900 (13%) data points were below the depth of extinction
and suitable for the linear regression calculation. In depths greater than the depth of
extinction the model loses its ability to predict the water depth from the log-band ratio
indicating that the log-band value of 1.022 signifies the light returning from the body

of water and not from the bottom.
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Linear regression of the SDB algorithm results
and the in-situ depth measurements
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Figure13 : The linear regression used in this study area. The model suggests a linear relantionship between the Blue-Green
band ratio and the in-situ depth measurenment up to the depth of extinction. In deeper depths the linear model loses
consistency as the the light recived at the sensor comes from the body of water and not from the bottom.

In the following figures, Figs. 14-17, we can see the results of the SDB layer at the
study area. The Raster was transformed into contours of 1 m steps for the visual
interpretation of the results. We can see that the contours tend to describe correctly
the shape of the shorelines as well as find submerged structures. In figure 17 we can
see contours that were generated at the deeper water that do not follow the actual
bathymetry. As these depths should be higher than the depth of extinction, the
contours there may be the results of unclear water.
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Figure14 : The SDB results near the IUI in Eilat, location A in the overview map. The white contours indicate the bathymetry,
i.e., the depth at that location.
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Figure15 : The SDB results at location B. We can see the contours at the shoreline as well as the contours around
submerged structures, about 0.5 km off the shore.
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Figure16 : The SDB results at location C, near El-Tor, Egypt. We can see the bathymetry at the shoreline and at the small
bay. Contours lines of submerged structures are also visible.
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Figure17 : The SDB results at location D, at the eastern shores. We can see the bathymetry following the shoreline as well
as misleading contours generated at the deeper waters. These may be the results of abstractions in the reflectance of light
or indications of turbulence in the water.
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The Dahlak Archipelago

The Dahlak archipelago study area at the eastern shores of Eritrea contains a very
small area of land as the water takes 95% of its pixels (Fig. 18). This area has

several islands of various sizes as well as a peninsula at its south-west corner.

The SDB process in this study area had a collection of nine Landsat 8 scenes for its
imagery input (path 148, row 69 on the WRS-2 coordinate system), all having less

than 0.1% of cloud coverage.

The in-situ dataset used for the calibration in this area was generated by John Hall
and consisted of 30,000 points in total, 20,000 of them were inside the boundaries of

the scenes used here.
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Figure18 : An overview of the Dahlak archipelago near Eritrea. This study area consists mainly of water with several islands
of various sizes. The pink points are the in-situ measurements that were available for the calibration and the red rectangle
represents the limits of the Landsat 8 scene used here. The letters A-D are the locations of the figures 22-25, respectively.
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Otsu’s method for thresholding successfully divided the pixels into the two classes
(Fig. 19). The threshold value was found be at 12,916 DN.

Otsu's Method Results
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Figure19 : The results of Otsu's method for thresholding implemented on the SWIR band at Dahlak, Eritrea. This method
was successful in splitting the pixels into the two separate classes of land and water with a thresholding value of 12,916

DN. Since the water takes 95% of all the pixels in this scene, the graph had to be cut on the vertical axis for the land class
to be visible.

The scene which best fitted the in-situ dataset was taken on 10/11/2017. The linear
regression had a maximum R? score of 0.568 at a depth of 6.9 m (Fig. 20). Since
similar R? scores are found up to depths of 11 m, this depth was chosen as the
depth of extinction. Beyond the depth of extinction, the R? score drops, indicating
that in these depths the linear model does not accurately correlate depths with the

log-band ratio.
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Figure20 : An analysis of the changes in R2 score with the increase of the depth of extinction. the best R2 was found at 6.9
m, while depths of up to 11 m could also be used with a similar R2 score.

In Fig. 21 we can see the results of the linear regression, both up to the depth of the

best R? value and up to the depth of extinction. Out of the 20,000 in-situ data points

available, roughly 9,500 (48%) data points were below the depth of extinction and

suitable for the linear regression calculation. In depths greater than the depth of

extinction the model loses its ability to predict the water depth as the graph flattens
at the log-band ratio of 1.020, indicating that this value signifies the light returning

from the body of water and not from the bottom.
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Linear regression of the SDB algorithm results
and the in-situ depth measurements
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Figure21 : The linear regressions used in this study area, both up to the depth that has the highest R2 score and up to the
depth of extinction. At the Blue-Green band ratio of 1.020 the graph flattens, indicating light reflecting from the body of
water and not the bottom.

In the following figures, Figs. 22-25, we can see the results of the SDB layer at the
study area. The Raster was transformed into contours of 1 m steps for the visual
interpretation of the results. We can see that the contours tend to describe correctly
the shape of the shorelines around the many islands as well as locate submerged
structures that are invisible in a standard true colored image (Fig. 23). In figure 24
we can see contours that correctly follow the islands at the north-west of the study
area, over 150 km from the in-situ measurements. This would suggest some
uniformity in the SDB. In Fig. 25 we can a multitude of contours around a submerged

structure, possibly pointing to noise from turbulence or atmospheric sources.
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Figure22 : The SDB results around the various islands (location A in the overview map). The background image here is the
panchromatic Landsat 8 image corresponding to the scene chosen for the SDB generation. We can see that the contours
correctly follow the different shorelines and the SDB was also able to identify submerged islands at the north-east corner of
this map.
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Figure23 : The SDB results at location B, set on a background of Google’s global imagery. We can see the contours
following the shoreline of the inlets.
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Figure24 : The SDB results at location C, set against the panchromatic Landsat 8 image. Although this location did not
contain any in-situ datapoints measurements and it was close to the borders of the study area, the SDB was nonetheless
able to correctly follow the shape of the islands. Several submerged structures, nearly invisible to the naked eye, were also
successfully mapped.
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Figure25 : The SDB results at location D, around a submerged structure. The multitude of contours may indicate noise from
turbulence or artifacts created by the sensor. It could also be the effects of clouds or dust particles covering this location.
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Bab el-Mandab

The Bab el-Mandab straits study area at the entrance of the Red Sea has a 1:2 ratio
of land to water as wet areas take about 30% of its pixels (Fig. 26). This area also

contains a few islands, some at its north-west end and some close to the straits.

The SDB process in this study area had a collection of six Landsat 8 scenes for its
imagery input (path 166, row 51 on the WRS-2 coordinate system), all having less

than 0.1% of cloud coverage.

The in-situ dataset used for the calibration in this area was generated by John Hall

and consisted of over 16,000 points, all of them inside the boundaries of the Landsat

8 scene used here.
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Figure26 : An overview of the Bab el-Mandab straits at the entrance to the Red Sea. This study area has 30% water coverage with a
few islands. The pink points are the in-situ measurements that were available for the calibration and the red rectangle represents the
limits of the Landsat 8 scene used here. The letters A-D are the locations of the figures 30-33, respectively.
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The separation of pixels into water and land classes using Otsu’s method was
successful. The threshold value was found be at 10,699 DN (Fig. 27).

Otsu's Method Results
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Figure27 : The results of Otsu's method for thresholding implemented on the SWIR band at the Bab el-Mandab straits.
This method was successful in splitting the pixels into the two separate classes of land and water with a thresholding value
of 10,699 DN.

The scene which best fitted the in-situ dataset was taken on 17/05/2016. The linear
regression had a maximum R? score of 0.69 at a depth of 15.8 m (Fig. 28). Similar
R? scores are found up to depths of 20 m which was chosen as the depth of
extinction with R? score of 0.669. Beyond the depth of extinction, the R? score drops,
indicating that in these depths the linear model does not accurately correlate depths

with the log-band ratio.
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Figure28 : An analysis of the changes in R2 score with the increase of the depth of extinction. the best R2 was found at

15.8 m, while depths of up to 20 m could also be used with a similar R2 score.

In Fig. 29 we can see the results of the linear regression, both up to the depth of the

best R? value and up to the depth of extinction. Out of the 16,000 in-situ data points

available, roughly 10,600 (66%) data points were below the depth of extinction of 20

m and suitable for the linear regression calculation. In depths greater than the depth

of extinction the model loses its ability to predict the water depth as the graph

flattens at the log-band ratio of 1.020, indicating that this value signifies the light

returning from the body of water and not from the bottom.
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Linear regression of the SDB algorithm results
and the in-situ depth measurements
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Figure29 : The linear regressions used in this study area, both up to the depth that has the highest R2 score and up to the
depth of extinction. At the Blue-Green band ratio of 1.020 the graph flattens, indicating light reflecting from the body of
water and not the bottom.

In the following figures, Figs. 30-33, we can see the results of the SDB layer at the
study area. The Raster was transformed into contours of 1 m steps for the visual
interpretation of the results. We can see that the contours tend to describe correctly
the shape of the shorelines around the shoreline but there are several contours in
the deeper water that seem to be inaccurate, as can be clearly seen in Figs. 32-33.

These may be the results of unclear water or inconsistent in-situ measurements.
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Figure30 : The SDB results around the various islands at the north-west areas of the study area (location A in the overview
map). We can see that the contours correctly follow the different shorelines, although it is unclear whether the contours
south of islands really describe submerged structures or are artifacts from unclear waters
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Figure31 : The SDB results at location B, the Bab el-Mandab straits. Here the SDB contours follow the shorelines of both
sides of the straits. Some contours that appear in the middle of the straits are probably an artifact from ships or clouds.
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Figure32 : The SDB results at location C. The contours follow the shoreline and describe some submerged structures,
although the high irregularity suggests that the SDB may be less accurate here.
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Figure33 : The SDB results at location D, following the shoreline. The contours that extrude into the water are an artifact
deriving from unclear water or atmosphere.
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Qatar

In the study area covering Bahrain and northern Qatar there are several submerged
structures, as well as small islands and long shorelines (Fig. 34). The area covered

by water takes about 65% of the total pixels.

The SDB process here had a collection of 23 Landsat 8 scenes for its imagery input
(path 163, row 42 on the WRS-2 coordinate system), all having less than 0.03% of

cloud coverage.

The in-situ dataset used for the calibration in this area was generated by John Hall
and consisted of over 34,000 points, 33,000 of them were inside the boundaries of

the Landsat 8 scene used here.
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Figure34 : An overview of the study area covering Bahrain and northern Qatar. This study area has 65% water coverage with a few
islands and submerged structures. The pink points are the in-situ measurements that were available for the calibration and the red
rectangle represents the limits of the Landsat 8 scene used here. The letters A-D are the locations of the figures 38-41, respectively.
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The separation of pixels into water and land classes using Otsu’s method was
successful. The threshold value was found be at 17,193 DN (Fig. 35).

Otsu's Method Results
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Figure35 : The results of Otsu's method for thresholding implemented on the SWIR band near Qatar and Bahrain. This
method was successful in splitting the pixels into the two separate classes of land and water with a thresholding value of
17,193 DN.

The scene which best fitted the in-situ dataset was taken on 09/09/2013. The linear
regression had a maximum R? score of 0.859 at a depth of 11.1 m (Fig. 36). Similar
R? scores are found up to depths of 15 m which was chosen as the depth of
extinction with R? score of 0.821. Beyond the depth of extinction, the R? score drops,
indicating that in these depths the linear model does not accurately correlate depths

with the log-band ratio.
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Figure36 : An analysis of the changes in R2 score with the increase of the depth of extinction. the best R2 was found at
11.1 m, while depths of up to 15 m could also be used with a similar R2 score.

In Fig. 37 we can see the results of the linear regression, up to the depth of the best
R? value and up to the depth of extinction. Out of the 33,000 in-situ data points
available, roughly 31,000 (93%) data points were below the depth of extinction of 15
meters and suitable for the linear regression calculation. In depths greater than the
depth of extinction the model loses its ability to predict the water depth as the graph
flattens at the log-band ratio of 1.021, indicating that this value signifies the light

returning from the body of water and not from the bottom.
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Linear regression of the SDB algorithm results
and the in-situ depth measurements
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Figure37 : The linear regressions used in this study area, both up to the depth that has the highest R2 score and up to the
depth of extinction. At the Blue-Green band ratio of 1.021 the graph flattens, indicating light reflecting from the body of
water and not the bottom.

In the following figures, 38-41, we can see the results of the SDB layer at the study
area. The Raster was transformed into contours of 1 m steps for the visual
interpretation of the results. We can see that the contours tend to describe correctly
the shape of submerged structures, even those that are barely visible in a standard
true color image (Fig. 38). The contours tend to follow the shorelines correctly but
there seems to be a lot of noise in the deeper water, maybe due to turbulence or
sediments. However, the contours in Fig. 41 were generated in an area which had
over 5,000 in-situ measurement points and it is possible that they describe the

bathymetry accurately.
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Figure38 : The SDB results around the various submerged structures south of Bahrain (location A in the overview map).
These structures are barely visible to the naked eye, but the algorithm successfully identifies them.
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5000 m

SDB algorithm and the contours follow their outline. At the south-east corner of this figure we can see many irreqular

contours, indicating unclear water or atmosphere.
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Figure40 : The SDB results at location C, offshore Saudi Arabia. The contours follow the shoreline and the inlets as well as
describing some submerged structures that are not visible otherwise.
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Figure41 : The SDB results at location D, near King Abdulaziz seaport. This area has a large density of in-situ data points,
strengthening the accuracy of the algorithm.
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Stage 2, part B: Calibrating by Tidal Data

In this part of the study | tested a new method for calibrating the SDB in areas
lacking in-situ data, relying on tidal data instead. | used the same SDB script as in
Stage 2, part A for downloading the relevant spectral bands, separating land and
water with Otsu’s method for thresholding, image processing and calculating the log-
band ratio. This process differs from part A in determining the best scene as it was
pre-selected to fit a certain acquisition date and not automatically selected from the
available Landsat 8 archive. The section of the script that followed the log-band ratio,

i.e., the sampling and linear regression fitting was changed to a new work protocol.

This new method was tested on two study areas, at the bay of Fundy in eastern
Canada and near Broome in western Australia (Figs. 42 and 50, respectively). These
areas were selected as they have a large tidal amplitude and a reliable,

governmental source for past tidal measurements.

The Bay of Fundy, Canada

This study area, covered by the Landsat 8 scene of path 9, row 29 (the WRS-2
coordinate system) is located at the bay of Fundy in eastern Canada (Fig. 42). In the
port of Saint John is located the buoy by which the Canadian government regularly
measures the tides in the bay. The tide data is published and made publicly available

through the Fisheries and Oceans Canada website.
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The tidal events that were used in this study were the low tide of 27/03/2019 at 14:49
(UTC), reaching a minimum of 1.4 m and the high tide of 02/08/2019 at 16:24 (UTC)
reaching a maximum of 8.2 m. For each of these dates a corresponding Landsat 8
scene was selected that had an acquisition time close to those events — an hour
before and after the high and low tide, respectively. Both of the scenes had less than

0.5% cloud coverage.
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Figure42 : The study area at the bay of Fundy, Canada. The red rectangle represents the boundaries of the Landsat 8 scene
and the red star is the location of the buoy near Saint John that is used for tidal measurements. The letters A-C are the
locations of the SDB result figures 47-49, respectively.

SDB algorithm calculation

Both scenes, representing high and low tide, went through image processing and
land/water separation using Otsu’s method for thresholding (Fig. 43). While we
would expect that during high tides the number of water pixels will be higher than
their low tide equivalence, there were 55% water coverage in low tide and 47% water

coverage in high tide. This may be due to the seasonal changes as the low tide
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image was acquired at the wet season while the high tide image was acquired at the

summer.

Otsu's Method Results
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Figure43 : The results of Otsu's method for thresholding implemented on the SWIR bands at the bay of Fundy. The figure
above is at high tide and the figure below is at low tide.
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Gathering data points for calibration

The location of the buoy (Fig. 42) provides a fixed location with known depths, as at
low tide the depth was 1.4 m and at high tide the depth was 8.2 m. Using the results
of the quotient of the log-band, | subtracted the areas covered with water at low tide
from their high tide equivalence, resulting in areas that represent the shoreline during
high tide (Fig. 44). These areas were assumed to have a depth of 1 m. After
selecting from these pixels the areas which seemed to best describe the shoreline, |

sampled them and generated a table of their values.

-736pooeo s 1 37 35poab . -734pooo -733pooo
)\
g Q
= £
S 5 a,Salt John - &
i f/ s A
B ¥, i‘p £ . % 7
" A = i g s . ?
i S ,..f:_(il‘ 0 i i lsz’d‘ ¥ 5 e ,""}
LofF . il VL'.
1% / % b ¢
o| ¥ ¢ 4 3
I 3 g c/
& 4
,-——'—-wf"‘-v- ' I\.‘
‘\' it
oty y
~ ‘\ 2 l:
The shorline at
high tides
Il Shoreline pixels
Digitized points from
0 5 10 km the high-tide shoreline
FEa _ I— ) ! 734000 -733p000

Figure44 : The shoreline at high tide. The red areas are dry during low tide and covered with water at high tide. | assumed
that they had a depth of 1 m during high tide. Out of those areas | digitized some as datapoints for the calibration.
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Calibration

By digitizing the points of the shoreline at high tide | generated a datapoint table of
2,900 points: A single point with the depth value of 8.2 m and the rest with a uniform
depth of 1 m. These points were used for the linear regression whose parameters
were the basis of the calibration. Since the depth points sampled at the shoreline
had a large range of values (Fig. 45) the mean value of them (1.013) was chosen as
the input. This may affect the outcome of the SDB and maybe different methods for
reducing this range (choosing the pixels with higher occurrence, for example) could

have better results.
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Figure45 : The distribution of the pixel values at the shoreline. The mean value was at 1.013.

The linear regression was applied to two points: one point at the buoy with depth of
8.2 m and the other at the mean value of the shoreline with depth of 1 m (Fig. 46).
Since the linear regression was between two points, there was no advantage in

trying different, more robust regression methods.
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Linear regression of the SDB algorithm results
and the tidal depth estimates
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Figure46 : The results of the linear regression between the tidal depth estimations and the log-band ratio of the high tide
imagery.

After | calculated the coefficients of this linear regression and applied them to the
log-band ration array generated at the high tide, | subtracted from the resulting array
the depth at the buoy of the low tide, thus receiving an array which represents the
mean depths, i.e. the depths between high and low tide. This array was saved as the
SDB GeoTIFF for the study area and transformed into contours.
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SDB results

The SDB seems to describe well the shapes of the shorelines around the study area
(Fig. 47). Inside the canal near Saint John (Fig 48), where the measurements buoy is
located, the depths match the mean depth, as expected. The depths become deeper
at the exit of the canal, although without having more data their accuracy cannot be
determined. There are several contours in the deeper water which seems to be less
accurate (Fig 49). They may be a result of unclear water or atmosphere as well as

representing the limits of the linear regression used here.

Figure47 : The results of the SDB at the south of the study area: the contours seem to correctly describe the shape of the
shoreline.
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Figure48 : The results of the SDB at Saint John, close to the buoy (appears as a red star). The depths around the buoy are
close to 6 m — matching the measurements. The depths at the rest of the canal are mainly 5 m, returning to 6 m and deeper
at its exit.
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Figure49 : The results of the SDB at the west of the study area. While the contours follow well the shoreline, there are some
contours in the deeper water that probably do not match the real depths. They may be the results of unclear water or the
calibration data.
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Broome, Australia

This study area, covered by the Landsat 8 scene of path 111, row 72 (the WRS-2
coordinate system) is located close to the city of Broome in western Australia. (Fig.
50). The buoy by which the Australian government regularly measures the tides in
this area is placed near the Broome wharf. The tidal data is published and made

publicly available through the Australian Bureau of Meteorology website.

The tidal events that were used in this study were the low tide of 03/04/2018 at 22:55
(UTC), reaching a minimum of 1.31 m and the high tide of 13/08/2019 at 01:36
(UTC) reaching a maximum of 7.52 m. For each of these dates a corresponding
Landsat 8 scene was selected that had a close acquisition time. Both scenes had

less than 0.1% cloud coverage.

Most of this study area is covered by deep water, meaning that the SDB here was be
relevant mostly for the shorelines and the inlets, as well as for the Lacepede islands
(Fig 56).
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Figure50 : The study area at the bay of Fundy, Canada. The red rectangle represents the boundaries of the Landsat 8 scene
and the red star is the location of the buoy near Saint John that is used for tidal measurements. The letters A-C are the
locations of the SDB result figures 55-57, respectively.
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SDB algorithm calculation

Both scenes, high and low tide, went through image processing and land/water
separation using Otsu’s method for thresholding (Fig. 51). In both scenes the water
takes about 84% of the total pixels, with 1% increase during high tide. This may be

the result of the water covering more of the shore during high tide.
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Figure51 : The results of Otsu's method for thresholding implemented on the SWIR bands near Broome.
The figure above is at high tide and the figure below is at low tide.



Gathering data points for calibration

The location of the buoy (Fig. 50) provides a fixed location with known depths, as at

low tide the depth is 1.31 m and at high tide the depth is 7.52 m. Using the results of

the quotient of the log-band, | subtracted the areas covered with water at low tide

from their high tide equivalence, resulting in areas that represent the shoreline during

high tide (Fig. 52). These areas were assumed to have a depth of 1 m. After

selecting from these pixels the areas which seemed to best describe the shoreline, |

sampled them and generated a table with their values.
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Figure52 : The shoreline at high tide. The red areas are dry during low tide and covered with water at high tide. | assumed
that they had a depth of 1 m during high tide. Out of those areas | digitized some as datapoints for the calibration — marked

as blue points.
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Calibration

By digitizing the points of the shoreline at high tide | generated a datapoint table of
770 points: A single point with the depth value of 7.52 m and the rest with a uniform
depth of 1 m. These points were used for the linear regression whose parameters
were the basis of the calibration. Since the depth points sampled at the shoreline
had a large range of values (Fig. 53) the mean value of them (1.002) was chosen as
the input. This may affect the outcome of the SDB and maybe different methods for
reducing this range (choosing the pixels with higher occurrence, for example) could

have better results.
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Figure53 : The distribution of the pixel values at the shoreline. The mean value was at 1.013.

The linear regression was applied to two points: one point at the buoy with depth of
7.52 m and the other at the mean value of the shoreline with depth of 1 m (Fig. 54).
Since the linear regression was between two points, there was no advantage in

trying different, more robust regression methods.
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Linear regression of the SDB algorithm results
and the tidal depth estimates
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Figure54 : The results of the linear regression between the tidal depth estimations and the log-band ratio of the high tide
imagery.

After | calculated the coefficients of this linear regression and applied them to the
log-band ration array generated at the high tide, | subtracted from the resulting array
the depth at the buoy of the low tide, thus receiving an array which represents the
mean depths, i.e. the depths between high and low tide. This array was saved as the
SDB GeoTIFF for the study area and transformed into contours.
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SDB results

The SDB seems to describe well the shapes of the shorelines around the study area
(Fig. 55) Near Broome, close to the buoy where the measurements took place, the
depths match the mean tidal depth, as expected. The depths become deeper at the
open sea and the contours end there as we pass the depth of extinction. There are
several contours in the deeper water which seems to be less accurate (Fig. 56),
although the shape of the shorelines and the submerged structures around the
Lacepede islands seem to have an accurate shape. The contours at Fig. 57 seem to
be less accurate as the depth increases. This may be a result of unclear water or
atmosphere as well as representing the limits of the linear regression used here.

Figure55 : The results of the SDB near the measurements buoy (appears as a red star): the contours seems to correctly
describe the shape of the shoreline.

74

1S3 @ :dewsaseg



. 13592000 13595000 1360p000

1359R000
Figure56 : The results of the SDB close to the Lacepede islands. We can see that the contours describe well the shape of the

islands’ shore as well as unseen structures at depths reaching to 7 m and beyond. Without further in-situ depth points we
cannot asses the accuracy of the deeper contours.
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Figure57 : The results of the SDB at the north-east of the study area. While the contours follow well the shoreline at this
inlet, there are some contours in the deeper water that probably do not match the real depths. They may be the results of
unclear water or sediments.
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Testing Different Fitting Methods

The fitting method most often used in the SDB literature is a simple linear regression
that aims to minimize the residual sum of squares between the observations and the
predictions. In SDB terms, it minimizes the sum of squares between the in-situ depth
measurements and the log-band ratio of a specific scene. This method is sensitive to
outliers in the data since it gives the same weight to every point. In cases where
error in the data is expected, other linear regression methods may show better

results.

| have tested two other linear regression methods on each of the four study areas
with regards to the best scene that was selected during the SDB process (Fig. 58).
Since the linear regression of the two study areas calibrated with tidal data had only

two points, there was no need to test these methods in those areas as well.

The results of the different methods are summarized in table 3:

Study Area OoLS Theil-Sen Huber
Eilat 2.58 2.75 2.66
Dahlak 2.44 2.47 2.48
Bab el-Mandab 4.35 4.49 4.36
Qatar 2.99 3.09 2.99
Mean Error 3.09 3.2 3.12

Table 3: A comparison between different linear regression method in the four study areas. The results are the RMSE of each
method regarding the entire dataset of points. The 'ordinary' linear regression (OLS) seems to have the best results overall.

It seems that in these four study areas there was no benefit of applying different
linear regression methods as the RMSE does not show a clear preferred method.
Furthermore, the ‘simple’ linear regression method, the OLS, achieved slightly better
results overall. We need to consider that these tests were executed on scenes that
were selected by the OLS method during the SDB script runs. It is possible that by
applying a different regression method during the selection of the scenes, another

scene would had been selected with lower RMSE in that specific method.
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Figure58 : A comparison of the different linear regression methods in the four study areas. The error was estimated in RMSE to better understand the
amount of error regarding the depth of extinction.
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Future Studies

| believe that the SDB process that | have developed and used in this study may be

further improved in future studies, specifically with regarding the following points:

1.

While Otsu’s method for thresholding had good results in separating the land
and the water, there may be better methods for increasing its accuracy. This
may influence the semi-wet pixels at the shorelines.

Landsat 8 was a good choice for this study. It has a good searchable archive
and good spatial and temporal resolution. However, there are currently other
publicly available satellites which could improve the accuracy of the SDB.
Sentinel 2, for example, has better resolution (10 m per pixels compared to 30
m in Landsat 8) and offers bands in a similar wavelength, thus can be
implemented in the SDB process.

While the automatic, multithreaded, downloading of the scenes by my script
reduced the time consumption of the SDB process, it relies on local internet
bandwidth and thus is limited. Future studies should prefer working directly in
the cloud resources, without downloading any data. This will have a dramatic
improvement on the overall performance.

In this study | tested several linear regression methods after selecting the best
scene. These methods can be implemented as an integral part of the script.
Moreover, recent studies (Cahalane et al., 2017) have used geographic
weighted regression (Brunsdon et al., 1998) for the calibration, which could
also be integrated into the SDB process.

The tidal-based calibration can be further developed by adding more data
points in the study areas, comparing different high and low tide events and
testing it in areas for which there are in-situ measurements points for the
accuracy estimations.

The SDB algorithm could be improved by looking for correlation between
other wavelengths and the depth. This should be tested with machine learning

methods, mainly neural networks, on all the available bands in each scene.
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Summary

Satellite derived bathymetry (SDB) had been implemented increasingly in recent
years thanks to the raise in computational abilities and the large amounts of
accessible imagery data. This tool offers the ability to map the shallow waters of

earth in a relatively cheap and fast manner.

In this research | improved an SDB method by developing a scripted, automated
process which uses publicly available cloud data and free, open sourced tools, to
generate SDB on a large scale. | tested this process on four study areas and the
results show a relatively high accuracy by comparing them to in-situ depth

measurements.

The ability to rapidly map areas lacking in-situ data was also tested in this study as |
developed a calibration method which relies on tidal amplitudes and comparison of
differences of shorelines between high and low tide. This method shows promising
results and it could be further developed to improve its accuracy.
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