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 תקציר

והמחקר, הם   אף החשיבות הרבה שיש לאוקיינוסים של כדור הארץ בתחומי הכלכלה, התיירות על

  71%ואילו  בעזרת כלים מהימניםממופה בלבד מהים  9%-שכההערכות הן  בם אינם ממופים.ברו

נתונים אודות  אומנם יש בידינו   אינם ממופים כלל. – מטר עומק  200עד   –הים רדוד מקרקעית 

ימטריה  טמגיעים מלווייני אלשל קרקעית הים בכיסוי גלובאלי, אולם הנתונים הללו המבנה הכללי 

מספיק לצורך מיפוי  ק"מ. בעוד שקנה מידה זה  1של מירבי בקנה מידה אופקי למיפוי שמוגבלים 

מספק לתחומי ידע כגון גיאומורפולוגיה  , אין הדבר  אוקיינייםמבנים גדולים כגון רכסים מרכז 

, כלים המתבססים על אמצעים אקוסטיים בסירות  הכלים המאפשרים מיפוי מדויק יותר. וביולוגיה

   השקעת זמן מרובה. ודורשיםיקרים  מחקר,

הממוחשב. תמונות לווין שזמינות לציבור  בשנים האחרונות חלה התקדמות רבה בתחום המיפוי 

ן למיפוי, בכלל זה מיפוי  שימוש הדמאות לוויהרחב בשילוב יכולות מחשוב מתקדמות הביאו לעלייה ב

יים הדורשים השקעת זמן קרקעית הים. יחד עם זאת, הכלים למיפוי ימי נותרו ברובם כלים ידנ

 מרובה ולא מאפשרים מיפוי של שטחים נרחבים. 

.  מטר 30-עד עומק של כ – בעבודה זו התמקדתי באחת משיטות המיפוי של קרקעית הים הרדוד 

ן היכולת של אורכי גל שונים לחדור את המים. מאחר והאור  בישיטה זו מסתמכת על ההבדלים 

  (nm525-600 ית לאור באורך הגל הירוק )לע פחות יחס( נבnm  450-515 באורך הגל הכחול )

היחס  הקושרת בין עומק המים לבין  פונקציהבהתאם למרחק שאותו האור עובר במים, ניתן למצוא  

לו. הקשר בין יחס אורכי הגל והעומק מתקיים כל עוד  של האור המוחזר מהקרקעית בשני אורכי גל א

ו עולה על עומק ההכחד שממנו ואילך האור לא העומק איננ וכן כל עוד תהמים צלולים וללא מערבוליו

מצריכה נתונים אודות כמות האור המוחזר באורכי הגל  השיטה  מחוזר מהקרקעית אלא מגוף המים.

השתמשתי בהדמאות  מדודים )נתוני אמת( כדי לכייל ולבדוק את התוצאות.השונים וכן נתוני עומק 

בשני מקורות עבור נתוני העומק  מקור לנתוני האור ויבור הרחב כהזמינות לצ Landsat 8 של הלווין

שיטות אקוסטיות וכן בנתונים  אוניברסיטאי באילת בעזרת -יןהמדודים: נתונים שנאספו במכון הב

 תוך דיגיטציה של מפות ימיות ממגוון מקורות. שיצר ד"ר ג'ון הול מ

מבוסס על שפת פייתון  ד מחשב הכתבתי קוהתחלק לשני שלבים עיקריים. בשלב הראשון מחקר ה

  מריץמהשרתים של אמזון, הגל הרלבנטיים כי אור הדמאות הלווין ב שעבור כל אזור מחקר מוריד את

יבשה, מחשב את יחס אורכי הגל ומכייל את  סדרה של עיבודי תמונה על כל הדמאה, מפריד בין ים ל

מקצר משמעותית את הזמן הנדרש התוצאות מול נתוני העומק המדודים. בכך יצרתי כלי אוטומטי ש

. במקביל שיפרתי את הדיוק של השלבים השונים, למשל על ידי  בים הרדודליצירת בתימטריה 

או בחירה אוטומטית  החלטה ויזואלית ל כתחליףכלים סטטיסטיים הפרדה בין ים ליבשה על בסיס 
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ה ויזואלית של  לאזור המחקר במקום בחירשל ההדמאה הטובה ביותר מתוך חישובי מרווח טעות  

 ציפית.  הדמאה ספ

חלק שבו השתמשתי בקוד המחשב ליצירת בתימטריה בארבעה אזורי השלב השני של המחקר כלל 

מנדב בפתח הים  -חלק שליד אריתריאה, מיצרי באב אלמפרץ אילת, ארכיפלג ד –מחקר שונים 

 והים שבין בחריין וצפון קטאר.   האדום

 ה חדשה לכיול הבתימטריה באזורים שבהם אין לנו כללי שיטפיתחתהשלב השני כלל חלק נוסף שבו 

והשפל הנוגעים למיקום קו החוף   הגאותנתוני עומק מדודים. לשם כך הסתמכתי על ההבדלים בין 

ולהפרשי הגובה כדי לייצר נתונים לכיול. השתמשתי בשיטה זו ליצירת בתימטריה רדודה בשני אזורי  

מפרץ פונדי שבמזרח קנדה והחוף שליד העיר   והשפל: ותהגאמחקר שבהם הפרשים גדולים בין 

 רומי במערב אוסטרליה.ב
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Background 

Despite the fundamental role that the oceans of Earth play in marine life, climate 

control, commerce and so forth, they remain poorly mapped. Although large-scale 

mapping tools, mainly satellite altimetry, are being used to generate global 

bathymetry, they have limited spatial resolution on the order of 1 km at best and 

therefore cannot identify smaller structures and features. The finer detailed 

bathymetry, which is vital, for example, to the study of active faults, glacial landforms 

and benthic habitats is very lacking. It is estimated that less than 18% of the oceans 

floor had been measured with small-scale tools such as echo sounding and Lidar, 

while about half of that area was mapped by extrapolation based on few 

measurements points, questioning its reliability (Mayer et al., 2018). 

This situation describes both the deep and the shallow areas of the large bodies of 

water of Earth, each with its unique challenges for mapping and measuring their 

depths. The estimations for the current state of ocean floor mapping puts the areas 

shallower than 200 m depth at 71% uncharted and the deeper areas at 66-85% 

uncharted. Of these two areas, the shallows present the heavier investment in terms 

of survey effort required due to the limitations of the sounding tools near the shore 

(Mayer et al., 2018).  

The improvement in computational power in recent years combined with a rise in the 

availability of publicly open satellite imagery facilitate the implementation of various 

research tools such as Satellite Derived Bathymetry (SDB). This tool offers the 

possibility of generating shallow-water bathymetry with lower costs and risks as 

compared to classical, direct measurement methods (Pe’eri et al., 2014). 

Additionally, SDB has the potential of generating navigation quality charts as its 

accuracy can reach the standards of the IHO (IHO, 2014; Pe’eri et al., 2014; Chénier 

et al., 2018).  

Relying mainly on optic remote sensing technology, SDB is limited to the photic 

zone, i.e., maximum depths of 200 m, which roughly represents 7% of Earth’s 

oceans area. (Mayer et al., 2018). This depth is considered a theoretical maximum, 

while in practice the depths are typically limited to optically shallow waters, 

approximatively one Secchi depth (Jegat et al., 2016). This suggests an average 

maximum of about 30 m depth (Pe’eri et al., 2014; Chénier et al., 2018; Kabiri, 2017; 
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Caballero & Stumpf, 2019) in non-turbid, oligotrophic waters, representing roughly 

2% of Earth’s oceans area (Fig. 1). In practice this percentage will be lower since 

large areas of the oceans tend towards the eutrophic state (Morel et al., 2010), thus 

limiting the potential penetration of light. Nevertheless, the shallows represent a 

highly dynamic environment (Chénier et al., 2018) whose research can benefit from 

satellite monitoring methods. 

 

 

The SDB method which I set to improve within this study is mainly a slow, manual 

process that relies on in-situ measurements for calibration. I automated the process 

in a script-based way while also exploring a new calibration technique derived from 

near-shore tidal amplitudes. This automated process may facilitate the generation of 

SDB for the purposes of area monitoring and future survey planning.  

 

  

Figure1 : A general model of the shallow areas of Earth oceans. The depths reaching 30 m occupy about 8,000,000 km2, 
being roughly 2% of the surface area of the oceans – about 360,000,000 km2 (Mayer et all., 2018; Eakings & Sharman, 
2012) 
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Research Objectives 

While Satellite Derived Bathymetry (SDB) has been implemented in several studies 

and over several areas in recent years (Caballero & Stumpf, 2019), it remains mainly 

a slow and manual process (IHO-IOC GEBCO Cook Book, 2015), not suitable for 

large scale mapping. In this study I improved the SDB method by turning it into an 

automatic tool and used it to generate a bathymetry layer (a geographic dataset 

used in GIS software) for the shallows in the various research areas. These 

bathymetry layers were calibrated, i.e., transformed into meaningful depth data, 

using two different methods: by using direct, in-situ measurements of depth or by 

using estimations that are derived from tidal amplitudes and difference in the location 

of the shorelines. 

This study was divided into two stages: 

Stage 1:  

Automating the SDB process by scripting the existing manual work process. I found 

alternative solutions to parts of the process which could not be directly automated, 

such as visually detecting a threshold value to distinguish between land and water, 

as well as choosing the best satellite scene by applying error estimations during the 

process and not relying on visually pre-selecting the best scene. 

Stage 2:  

Part A: The automated process was used for generating a bathymetry layer for four 

study areas in the Red Sea & the Persian Gulf (Fig. 2) for which I had reliable in-situ 

depth measurements. These bathymetry layers were generated while testing several 

calibration methods. 
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Part B: I introduced a novel, tidal-based method for calibrating SDB without relying 

on in-situ data. This method was tested in the Bay of Fundy in Canada and near 

Broome, Australia (Fig. 3) – areas which offer a large differential tidal amplitude.  

Figure  2 : The study areas used in part A of Stage 2 for testing several SDB calibration methods.  
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Figure  3 : The study areas (mark as a red rectangle) used in part B of Stage 2 for testing a novel tidal-based 
calibration method: The Bay of Fundy (above) and Broome, Australia (below). 
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Methods 

The SDB Algorithm 

The radiance observed by a remote detector over any shallow-water location can be 

generally described with a simple model (Lyzenga, 1978; Philpot, 1989): 

 

(1) 𝐿𝑜𝑏𝑠 = 𝐿𝑏𝑒−𝑘𝑧 + 𝐿𝑤  

 

Where Lobs is the observed reflectance, z is the depth, Lw is the reflectance over 

deep water (𝑧 → ∞), k is an attenuation coefficient and Lb is the radiance term which 

is sensitive to bottom reflectance. The last two variables represent the effect of 

several environmental conditions, such as atmospheric transmittance, solar 

irradiance and bottom albedo.  

The correlation between the depth and the observed reflectance can be calculated 

using two SDB approaches: The physical approach and the empirical approach. In 

the physical approach the different environmental conditions are measured or 

estimated and are used as parameters in a series of equations that correlate the 

depth to the observed reflectance (Dekker et al., 2011). In the empirical approach, 

which was used in this study, the observed reflectance is calibrated with depth 

measurements from the study area. To minimize the effects of the environmental 

conditions, a log-ratio model was used. This model assumes that in a uniformly 

mixed water column the ratio of two bands will have a near-constant attenuation 

value since both bands will be affected by the same environmental factors (Stumpf et 

al., 2003; Pe’eri et al., 2014), thus the log-ratio (R) of the light observed within the 

two bands (λi, λj) is proportional to the depth: 

 

(2) 𝑅 =
ln (𝐿𝑜𝑏𝑠(𝜆𝑖))

ln (𝐿𝑜𝑏𝑠(𝜆𝑗))
 

 

(3) 𝑧 = 𝑓(𝑅) 
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The model shows a linear relationship (the function f) between in-situ depth 

measurements and the log-ratio. Both of the linear parameters – the gain (m1) and 

the offset (m0) – can be empirically determined by (Pe’eri et al., 2014): 

 

(4) 𝑧 = 𝑚1𝑅 + 𝑚0 

 

This linear relationship occurs only in optically clear shallow water. In deeper water 

the observed radiance originates from light scattering within the water column with a 

minimal-to-non-existing contribution from the bottom reflectance. Thus, a depth of 

extinction should be determined which will represent the maximum valid depth 

observable within the model for each specific sensor scene.  

In this research I used the log-ratio between the blue (450-510 nm) and green 

wavelengths (530-590 nm) as suggested by Stumpf et al. (2003) for the minimization 

of the environmental effects (Pe’eri et al., 2014).  

 

Satellites Images used in the Study 

The input imagery used as a source for the SDB was the Blue, Green and 

Shortwave-Infrared (SWIR) bands from the OLI sensor in the USGS Landsat 8 

platform (bands 2,3 and 6, respectively – see Table 1). Each of these bands has a 

spatial resolution of 30m and is referenced to the Universal Transverse Mercator 

projection using the WGS84 datum.  

 

The Landsat 8 mission follows the coordinate system of the World Reference 

System 2 (WRS-2) that divides the globes into a sequence of paths and rows so that 

every image is assigned to a path/row couple, with some overlapping areas. The 

satellite revisits each path/row every 16 days, adding to an increasing archive of 

images. This large, publicly available, archive of Landsat 8 images enabled me to 

Band Spectral Range [µm] Spatial Resolution 

2 – Blue 0.452-0.512 30 m 

3 – Green 0.533-0.590 30 m 

6 – Shortwave Infrared (SWIR) 1.566-1.651 30 m 

Table  1 : Spectral bands used in this study 
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focus on scenes with higher quality by using exclusively the Tier-1 data products. 

This data tier ensures a maximum of 3% in absolute radiometric uncertainty, an 

average of 0.09% in temporal uncertainty and an absolute geodetic accuracy better 

than 12m circular error at 90% confidence (USGS, 2019). Moreover, in each study 

area I selected only the images with less than 0.1% cloud coverage in order to 

minimize the need for cloud correction steps in the process. While this reduced the 

number of available scenes for each study area by 90-95%, the large Landsat 8 

archive offered nonetheless a seemingly sufficient number of images. 

The pixel values in the Landsat 8 bands used in this study represent the amount of 

light reaching the sensor (Top-of-Atmosphere, or ToA, reflectance). In order to 

reduce the bandwidth and amount of storage required for saving this data, the ToA 

reflectance in the Landsat 8 mission is converted and saved in the final product as 

integers of dimensionless, 16-bit digital numbers (DN), with a range between 0 and 

65,536. These DN have a linear correlation to the ToA reflectance, by which pixels of 

higher values represent areas that reflect more light back at the sensor compared to 

areas with low pixel values (Fig. 4). 

Each Landsat 8 image is contained within a rectangle with dimensions of 7581 pixels 

wide by 7731 pixels high, representing an area of 227 X 232 km. The actual data 

that is acquired by the sensor has an area of 190 X 180 km. The containing 

rectangle has a constant pixel value of 0 DN that should be taken into consideration 

in the image processing. 
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Tools used in the study 

An effort was made throughout the study to ensure that I used only open sourced, 

cross platformed, publicly available software and data. This should facilitate others to 

use our techniques without having to adjust or re-write parts of the code. 

Python 3.x was chosen as the main scripting language, coupled with several external 

Python modules for specific tasks. These include Requests (© Kenneth Reitz 2019) 

for HTTP communication, Numpy (Van der Walt, 2011) for numerical computation, 

Scipy (Millman & Aivazis, 2011) for image filtering and simple linear regression, 

Pandas (McKinney, 2010) for structuring data, scikit-image (Van der Walt, 2014) for 

image processing, scikit-learn (Pedregosa, 2011) for calibrations and linear 

regression, Matplotlib (Hunter, 2007) for plotting, Rasterio (©MapBox 2016) for 

GeoTIFF processing, tqdm (da Costa-Luis, 2019) for progress monitoring and pyproj 

(© Jeffrey Whitaker 2019) for handling reprojections of geographic datasets. 

The GIS software used early in the study were ArcGIS Pro 2.x and Global Mapper 

14. In the later stages of the study I switched to QGIS 3.x, an open source GIS. 

Figure  4 : Comparison of the Blue band (left) and Shortwave Infrared (SWIR) band (right) of Landsat 8, around the Gulf of 
Eilat (the Gulf of Aqaba). The bounding box is clearly visible (black color = pixel value of 0 DN) as well as the difference in the 
amount of light absorbed by the water. Since darker pixels mean less light reaching the sensor, we can clearly see how in 
the SWIR band the sea absorbs significantly more light than the same area in the blue wavelengths. 
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Sources for depth data  

The ground truth data on which the calibrations were based was taken from the work 

of Dr. Hall (Hall, 2017). Dr. Hall manually digitized hundreds of nautical charts from 

various sources while solving the contradictions that arise from using different 

sources at different scales, accuracy and projections. This research used the 

relevant digitized nautical charts for the four study areas around the Arabian 

Peninsula. 

 

Calibration techniques 

After applying the SDB algorithm, a 2-dimensional array (hence: the uncalibrated 

array) is generated whose elements represent the quotient of the natural logarithm of 

the post-processed Blue and Green pixels. This array contains elements with NULL 

(or NoData) values which represent pixels in areas of dry land or in the bounding 

box, while the elements which have numeric values represent areas covered in 

water. These numeric values are unitless and they typically range between 0.9-1.03, 

when values smaller than 1.0 represent shallower areas as they indicate pixels 

where the Green wavelength was more absorbed compared to the Blue wavelength. 

In order to transform this array into a meaningful bathymetry layer whose elements 

have units of depth, I applied a calibration process based on two different methods.    

 

The Traditional Method: Calibrating against measured data 

This method, which is well documented in the literature (IHO-IOC GEBCO Cook 

Book, 2015; Pe’eri et al., 2014), has a standard work protocol for achieving the 

calibration. This protocol consists of sampling the uncalibrated array against existing 

in-situ depth measurements, plotting a mean value of the sampling results, visually 

detecting a depth of extinction, using a simple linear regression for extracting the 

gain and offset parameters and using those values as coefficients for the calibration 

of each pixel. I this study I followed the main steps of the protocol while testing new 

methods for improving its accuracy. The final protocol that was implemented in this 

study had the following steps: 
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1. The in-situ depth measurements were loaded into the script as a Pandas data 

frame, which included the depth and the coordinates of each measurement. 

This data frame was ‘cleaned’ by removing entries such as non-number or 

NULL values as well as making sure that the data has only positive numbers. 

2. The elements of the data frame were re-projected into the same projection as 

the original Landsat 8 scenes which were the source of the uncalibrated array. 

The re-projection was implemented by using the transform function of the 

pyproj module which takes as inputs both relevant projections.  

3. Each element of the uncalibrated array which had a congruent data frame 

element was sampled against it, resulting in a new array (hence: the sampling 

array) comprising of coupling of uncalibrated values and depth 

measurements. 

4. A mean function was used on the sampling array, resulting in a series of 

discrete depth measurements with a corresponding mean uncalibrated value. 

5. The series of mean values was then used as the bases for the linear 

regression calculations. In a ten permutations repeat process, it was divided 

into a training set and a testing test (following the rule-of-thumb of 70%-30% 

respectively) and a linear regression model was used to find the scene which 

best fits the data in the study area (i.e., the scene that maximized the R2 

score). 

6. Two other linear regression methods were tested on the best scene: Theil–

Sen estimator (Dang et el., 2009), a method that for reducing that effects of 

outliers in the X direction (the in-situ depths) and Huber regression (Huber, 

1964), a method for reducing the weight of the outliers. These methods were 

implemented using the scikit-learn module and were compared against the 

simple linear regression of ordinary least squares – the regression most often 

used in the literature (Pe’eri et al., 2014; Chénier et al., 2018; Kabiri, 2017). 

7. The gain and offset parameters were extracted from the linear regression. 

These were used as the coefficients for calibrating each pixel of the 

uncalibrated array. 

8.  The resulting calibrated array was exported into a GeoTIFF as well as a 

feature class of linear contours. 
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Novel: Tides 

In this study I tested a novel method for calibrating SDB in areas for which there 

were no in-situ measurements, using data derived from tides. 

 

Tides are generated when there are differential gravitational forces between the 

Earth, the Moon and the Sun. These differential forces can be defined as (Hicks, 

2006):   

 

(5) 𝐷𝑚 = ±𝐺 (
2𝑀𝐸𝜌

𝑟3 ) 

 

Where Dm is the differential forces between the Earth and the Moon, G is the 

gravitational constant, M is the mass of the Moon, E is the mass of Earth, ρ is the 

equatorial radius of Earth and r is the distance between the centers of mass of the 

Earth and the Moon. Similarly, for the tides generated due to differential forces 

between the Earth and the Sun: 

 

(6) 𝐷𝑠 = ±𝐺 (
2𝑆𝐸𝜌

𝑟3 ) 

 

Where Ds is the differential forces between the Earth and the Sun, S is the mass of 

the Sun and r is the distance between the centers of mass of the Earth, and the Sun. 

The sign of the equation depends on whether this is the side of the Earth facing 

towards the Moon or Sun or is it the side facing away. The actual movement of the 

bodies of water due to these forces are described as deep ocean wave motion, 

where the speed of the propagating wave is given by: 

 

(7) 𝐶 =
𝐿

𝑇
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Where C is the speed of the wave, L is its length and T is the period, i.e., the time 

interval between two successive wave crests. In shallow waters, as the wave 

propagated towards the shore or into a bay or estuary, its speed is reduced: 

 

(8) 𝐶 = √𝑔ℎ 

 

Where g is the acceleration of gravity and h is the depth. This depth decreases as 

the wave approaches the shore, thus reducing C. Since the period of the wave is 

constant, the reduction in speed means also a decrease in the wavelength (Eq. 7), 

which has an effect of increasing the wave’s amplitude. As tidal waves move into a 

bay, they are reflected upon themselves and form a standing wave whose form does 

not progress. The characteristics of this standing wave depends mainly on the 

characteristics of the estuary as its length determines the wavelength (L, Eq. 7) and 

thus the speed and height of the wave. Furthermore, the shape of the estuary also 

determines the location of the standing wave’s nodes. i.e., the locations between the 

wave’s maximum and minimum. If these nodes are located near the entrance to the 

estuary, the near-shore tide will be greatly amplified. While it is possible to predict 

the moment and amplitude of an oceanic tidal wave by using Eq. 5 and 6, it is harder 

to estimate when the signal of this wave will reach the shore. As stated above, the 

speed of the wave changes when it approaches the shore as well as the amplitude. 

Moreover, in some bays the furthest shores are separated from the ocean by straits 

which slows the wave and affects the location of the nodes. This can be seen, for 

example, in the Gulf of Eilat in which the tidal wave traverses over 2,000 km and 

passes both Bab el-Mandeb and the Tiran straits before reaching the shore.  

The tidal-based calibration process required finding satellite images captured during 

high and low tides at the research areas. Since the complicated prediction of 

nearshore tidal waves was beyond the scope of this study, I used past tidal 

measurements from the governmental agencies of Canada and Australia to find the 

parameters required for the calibration. 

My aim was to generate an SDB layer describing the depths during mean tide (Zm), 

i.e., the depth between high tide (Zt) and low tide (Ze). This was achieved by finding 
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the function (f) that correlates the water depth during high tide at each pixel in the 

research area with the log-band ratio calculated for that scene. This function was 

assumed to be linear, similar to the model used in the traditional calibration: 

 

(9) 𝑓(𝑅) = 𝑍0 + 𝑎𝑅 

 

Where Z0 is the depth at the shoreline and R is the log-band ratio.  

The linear regression was calculated on the log-band ratio during high tide (Rt) and it 

was based on two data points. The first point was the log-band ratio during high tide 

sampled at the specific location used for measuring the water depths, as published 

by the governmental agencies. The mean water depth at these locations is given by: 

 

(10) 𝑍𝑚 = 𝑍𝑡 − 𝑍𝑒 

 

The second data point was manually sampled by examining the difference in the 

shoreline between high and low tides. Since during high tide the shoreline advances 

towards the land, there exists some areas that are above water during low tide but 

will be covered by water at high tide. The pixels of these areas can be identified in a 

scripted method by subtracting the below-water pixels at low tide from their high tide 

equivalents, thus generating a raster whose pixels have data only in the high tide 

shoreline and NULL values everywhere else. The value of those pixels – the quotient 

of the log-band at high tide – were sampled and became the second point for the 

linear regression. I then calculated the parameters of this linear regression and used 

them as linear coefficients for the calibration of the high tide SDB. From this layer I 

subtracted the depth at low tide (Eq. 10) in order to generate an SDB layer 

corresponding to the mean tide. 

The study areas that were chosen for testing this method have a large tidal 

amplitude of 6-10 m, which was assumed to reduce effects of inaccurate 

measurements. In these areas there is also a reliable, publicly available source for 

tidal measurements.    
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The Work Process 

The overall work process used for part A and B of stage 2 was divided into several 

logical steps, as illustrated in Fig. 7 and detailed below. 

 

Image Acquisition 

The data warehouse used in this study was Amazon’s AWS Public Dataset Program, 

chosen for its high availably and ease of search and access. Amazon provides a 

continuously updated Comma-Separated-Value (CSV) file with a list of all available 

scenes, including searchable metadata describing cloud coverage percentage, data 

tier level, acquisition time and the scene’s URL which points to list of downloadable 

GeoTIFF images representing the different bands of that scene. 

In Part A of Stage 2 of the study I identified a path/row for the various study areas. 

For each path/row a list of all available, Tier-1 scenes with a maximum cloud 

coverage of 0.1% was created from Amazon’s CSV scenes lists. For each scene the 

three respective bands were downloaded simultaneously from Amazon’s servers 

using the Requests module and utilizing three parallel threads.  

In Part B of Stage 2 of the study I selected from Amazon’s CSV scenes lists the 

scenes with an acquisition time corresponding to the high and low tides of the study 

areas. Similar to part A, the three bands of each scene were downloaded 

simultaneously from Amazon’s servers using the Requests module and utilizing 

three parallel threads. 

 

Land-water separation 

The amount of light absorbed by water depended greatly on its wavelength (Fig. 5). 

Water reflects light in the visible spectrum while absorbing infrared light. In the 

Landsat 8 Infrared images this is represented by pixels with low DN values over wet 

areas, as opposed to higher values over dry land (Fig. 4).  
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I used this fact to perform an automatic thresholding technique for distinguishing 

between water and dry land by applying Otsu’s thresholding method (Otsu, 1979) on 

band 6 (Table 1). This algorithm exhaustively searches for the threshold value that 

maximizes the inter-class pixel value variance of two classes (Fig. 6). Once the 

threshold value is found, the image can be binarily spilt, one class representing the 

wet areas and the other represents dry land. The pixels of the image that were found 

to be parts of the wet areas were used as an image mask for the following steps, so 

that no calculations were performed on dry land. Special care was given for the 

pixels with a value of 0 DN, since those represent the blocking rectangle and not the 

actual image.  

This step was implemented using the Rasterio module for reading and writing the 

various GeoTIFF images while the binary thresholding and the implementation of 

Otsu’s method was done with the scikit-image module. This process improves 
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Figure  5 : Absorption of light in different wavelengths by water. The minimum of absorption is at the blue and green 
wavelengths while the near and mid infra-red are much more absorbed. 
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previous methods for separating land from water that rely on manually searching for 

the threshold value, both in terms of speed and accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure  6 : A visualization of Otsu's method for binary thresholding (above). The maximum 
value of the variance separates the image into two areas based on the pixel’s values. The 
results of implementing this method in the study area near Qatar (below) clearly shows the 
separation into two distinct classes with the threshold value found at pixel value of 17,721 
DN. 
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Image processing 

The blue and green bands, which are the components of the SDB algorithm, went 

through a series of image processing steps designed to prepare them for the 

algorithm’s calculation. These steps included:  

I. Changing the pixel data type from 16-bit integers (i.e., the original DN 

values) to 64-bit floating points to ensure minimal data loss in the following 

steps as well as to enable registering NULL values. 

II. Applying a low-pass filter to minimize outliers and noise in the data. This 

step was implemented using a median filter from the Multidimensional 

Image Processing package, a part of the Scipy module. This filter was 

calculated upon the surrounding 3x3 neighboring pixels for each pixel in 

the image, while a reflecting technique was used for the borders, under the 

assumption that the pixels immediately outside the scene’s borders are 

very similar to their neighbors inside. 

III. Using the class representing dry areas from the land-water separation 

step, the corresponding dry areas in the Blue and Green images were 

removed (marked as NULL values with the Numpy module). The resulting 

images have pixel values only in areas that were found to belong to the 

water class. 

IV. The pixels of the containing rectangle, which had a DN value of 0, were 

also marked as NULL values. 

V. A natural log was calculated for each pixel using the Numpy module. 
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Applying the SDB algorithm 

Having two arrays of the water area of the scene, one for the blue wavelength and 

one for the green wavelength, with their pixels representing the natural log of the 

original DN value (post image processing), the SDB algorithm was calculated as a 

simple quotient of the two bands (Eq. 2.), resulting in an array whose shape is the 

dimensions of the original scene – 7301 rows and 7271 columns and whose values 

are the quotient. 

 

Sampling 

In order to sample the in-situ depth data against the results of the SDB algorithm, 

i.e., obtain a table consisting of the in-situ depth measurement with the SDB 

algorithm pixel value overlapping each specific depth data, both datasets were 

required to be in the same coordinate system. While each Landsat 8 scene has a 

known projection in the Universal Transverse Mercator projection (using the WGS84 

Figure  7 : The overall SDB process used in this study, divided into logical steps.  



21 
 

datum), the in-situ data had different projections as it arrived from different sources. 

Thus, in each study area the in-situ data’s projection had to be pre-known and re-

projected to match the projection of the satellite image. This was achieved in two 

steps: 

1. While opening the SWIR band for the preparation of the Otsu’s thresholding 

the coordinate system of the specific scene was registered. 

2. When the script reached the sampling part, the in-situ data was re-projected 

to the coordinate system from step 1. This was implemented using the pyproj 

module which applied an affine transformation. 

Once both datasets were in the same coordinate, the sampled table was generated 

using the Pandas module. 

 

Calibrating 

In order to transform the SDB algorithm into a meaningful depth grid, its pixels 

needed to be converted from dimensionless units to units of length (meters). This 

transformation was achieved by applying a linear equation on each pixel, so that: 

 

(11) 𝑑 = 𝑚1𝑝 + 𝑚0 

 

where d is the pixel in depth units, p is the dimensionless pixel and m1, m0 are the 

coefficients that result from the linear regression.  

All the available scenes in each study area were linearly fitted against the in-situ 

depth data using the ordinary least squares regression method. The scene which 

had a maximum R2 score was selected as the best scene and was calibrated using 

the parameters calculated from the linear regression. That scene was then fitted 

against the in-situ data using the different linear regression methods.  
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Saving the results 

After applying the linear transformation and obtaining an array whose elements have 

units of depth, a bathymetry grid was generated. This was achieved with the 

Rasterio module in a process whose inputs were the array, the coordinate system of 

the original SWIR band and the desired format. All the grids were generated as a 

single band GeoTIFF with 32-bit pixels whose values represent the water depth in 

meters. A vector GIS file of linear contours was later generated from the GeoTIFF 

using a GIS software. 
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Results and Discussion 

Stage 1: Automating the work process 

The manual work protocol was fully automated and replaced with a scripted protocol 

(Fig. 7). The difference between the two protocols is summed in Table 2:  

Work protocol logical 

step 

Manual protocol New, automated 

protocol 

Finding the best scene  Visually selecting the best 

scene from the available 

scenes in the archives 

Working on all the 

available Tier-1 scenes, 

choosing the best scene 

by minimizing the model’s 

error 

Downloading the scene Manually downloading by 

a web browser interface 

Scripted, multithreaded 

downloading through GET 

HTTP requests 

Extracting the 3 bands 

needed for the protocol 

Un-zipping the 

downloaded archive, 

deleting the unnecessary 

bands 

Downloading only the 3 

bands 

Pre-processing (changing 

pixel type, low-pass 

filtering) 

Manually with a GIS 

software 

Using the Python script 

Cloud removal With a GIS software 

creating polygons that 

spends areas with both 

clouds and clear sky. 

Sampling and applying 

linear regression for 

removing the clouded 

areas. 

Made obsolete by 

selecting only scenes with 

minimal (less than 0.1%) 

cloud coverage 
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Work protocol logical 

step 

Manual protocol New, automated 

protocol 

Separating land and 

water 

Manually looking for a 

threshold value – either 

visually or by examining 

the histogram of the 

image 

Applying Otsu’s method 

for automatic thresholding 

Applying the SDB 

algorithm 

Manually with a GIS 

software 

Using the Python script 

Re-projecting the in-situ 

depth data to the scene’s 

coordinates 

Manually with a GIS 

software 

Using the Python script 

Sampling the SDB 

algorithm layer against 

the depth data 

Manually with a GIS 

software 

Using the Python script 

Applying linear 

regression, finding the 

parameters and depth of 

extinction 

Manually, usually with 

Excel or another 

electronic worksheet 

software 

Using the Python script 

Generating a bathymetry 

grid 

Manually with a GIS 

software 

Using the Python script 

 

  

 

 

 

  

Table  2 : The differences between the original work process and the new process used in this study. 
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Stage 2, part A: Generating SDB layers 

I applied the scripted work protocol developed in stage 1 in four study areas: The 

Gulf of Eilat (Gulf of Aqaba); the Dahlak archipelago, Eritrea; Bab el-Mandab straits; 

Bahrain and western Qatar (Fig. 8).  

 

 

 

 

 

 

 

Figure  8 : The four study areas used in stage 2, part A: The Gulf of Eilat (1); the Dahlak archipelago, Eritrea (2); Bab el-
Mandab straits (3); Bahrain and western Qatar (4). 
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The Gulf of Eilat 

The Landsat 8 scene that covers the northern area of the Red Sea (path 174, row 40 

in the WRS-2 coordinate system) spends over a large area of land and a smaller 

area of water (Fig. 9) as the water takes 14% of the total pixels. This area tends to 

be less covered in clouds, thus the script had over 60 available scenes with a cloud 

coverage of less than 1%. Out of those scenes 8 were chosen for the analysis, 

having a cloud coverage of 0.01%.  

 

Two separate datasets were available as the in-situ data points for the calibration 

(Fig. 10). One dataset with 27,000 points from the work of Dr. John Hall and another 

dataset with 55,000 points generated by eco-sounding sampling made at the IUI in 

Eilat. While the first dataset covered the entire scene, its data was inconsistent and 

could not be used for SDB. The second dataset was therefore used but since it was 

gathered only very close to Eilat it is not clear how well it describes the bathymetry of 

the more southern areas.  

Figure  9 : An overview map of the study area at the Gulf of Eilat. The red rectangle indicates the boundaries of the Landsat 8 
scene used for the SDB and the letters A-D signify the locations shown in the figures 14-17 respectively. 
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The relatively small amount of water pixels challenged the process of thresholding 

using Otsu’s method. In Fig. 11 we can see that the first threshold value found by 

this method was at 21,757 DN, a value that does not correctly divides the image into 

the two classes. Therefore, a second run of the Otsu’s method was executed on the 

resulting image. This second run had a thresholding value of 12,998 DN which better 

separates the land and water classes.    

Figure  10 : The datasets used as in-situ data points for the calibration. The yellow points were the results of the nautical 
charts digitization done by John Hall and the red points were generated at the IUI in Eilat by eco-sounding close to shore. 
While Hall’s dataset covers the entire scene, it was inconsistent and could not be used for the calibration. On the other 
hand, while the data collected at IUI had better quality, it only represents the northern part of the gulf. 
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The scene which best fitted the in-situ dataset was taken on 10/06/2016. The linear 

regression had a R2 score of 0.869 at a depth of 13.4 m, while similar R2 scores can 

be achieved by choosing a depth of extinction of 17 m (Fig. 12).  

 

Figure  11 : The results of Otsu's method for thresholding implemented on the SWIR band at the Gulf of Eilat. Two separate 
script runs were needed in this scene as the first run found a threshold value that was not able to accurately divide the 
pixels into the two classes of land and water. 



29 
 

 

 

In Fig. 13 we can see the results of the linear regression. Out of the 55,000 in-situ 

data points available, 6,900 (13%) data points were below the depth of extinction 

and suitable for the linear regression calculation. In depths greater than the depth of 

extinction the model loses its ability to predict the water depth from the log-band ratio 

indicating that the log-band value of 1.022 signifies the light returning from the body 

of water and not from the bottom. 

 

 

 

 

Figure  12 : An analysis of the changes in R2 score with the increase of the depth of extinction. The best R2 was found at 
13.4 m, while higher depths can also be used as a depth of extinction with a relatively high R2 score. 
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In the following figures, Figs. 14-17, we can see the results of the SDB layer at the 

study area. The Raster was transformed into contours of 1 m steps for the visual 

interpretation of the results. We can see that the contours tend to describe correctly 

the shape of the shorelines as well as find submerged structures. In figure 17 we can 

see contours that were generated at the deeper water that do not follow the actual 

bathymetry. As these depths should be higher than the depth of extinction, the 

contours there may be the results of unclear water. 

 

 

 

 

Figure  13 : The linear regression used in this study area. The model suggests a linear relantionship between the Blue-Green 
band ratio and the in-situ depth measurenment up to the depth of extinction. In deeper depths the linear model loses 
consistency as the the light recived at the sensor comes from the body of water and not from the bottom. 
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Figure  14 : The SDB results near the IUI in Eilat, location A in the overview map. The white contours indicate the bathymetry, 
i.e., the depth at that location. 
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Figure  15 : The SDB results at location B. We can see the contours at the shoreline as well as the contours around 
submerged structures, about 0.5 km off the shore. 
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Figure  16 : The SDB results at location C, near El-Tor, Egypt. We can see the bathymetry at the shoreline and at the small 
bay. Contours lines of submerged structures are also visible. 
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Figure  17 : The SDB results at location D, at the eastern shores. We can see the bathymetry following the shoreline as well 
as misleading contours generated at the deeper waters. These may be the results of abstractions in the reflectance of light 
or indications of turbulence in the water. 
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The Dahlak Archipelago 

The Dahlak archipelago study area at the eastern shores of Eritrea contains a very 

small area of land as the water takes 95% of its pixels (Fig. 18). This area has 

several islands of various sizes as well as a peninsula at its south-west corner.  

The SDB process in this study area had a collection of nine Landsat 8 scenes for its 

imagery input (path 148, row 69 on the WRS-2 coordinate system), all having less 

than 0.1% of cloud coverage.  

The in-situ dataset used for the calibration in this area was generated by John Hall 

and consisted of 30,000 points in total, 20,000 of them were inside the boundaries of 

the scenes used here.  

 

 

Figure  18 : An overview of the Dahlak archipelago near Eritrea. This study area consists mainly of water with several islands 
of various sizes. The pink points are the in-situ measurements that were available for the calibration and the red rectangle 
represents the limits of the Landsat 8 scene used here. The letters A-D are the locations of the figures 22-25, respectively. 
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Otsu’s method for thresholding successfully divided the pixels into the two classes 

(Fig. 19). The threshold value was found be at 12,916 DN. 

 

 

 

The scene which best fitted the in-situ dataset was taken on 10/11/2017. The linear 

regression had a maximum R2 score of 0.568 at a depth of 6.9 m (Fig. 20). Since 

similar R2 scores are found up to depths of 11 m, this depth was chosen as the 

depth of extinction. Beyond the depth of extinction, the R2 score drops, indicating 

that in these depths the linear model does not accurately correlate depths with the 

log-band ratio.   

 

Figure  19 : The results of Otsu's method for thresholding implemented on the SWIR band at Dahlak, Eritrea. This method 
was successful in splitting the pixels into the two separate classes of land and water with a thresholding value of 12,916 
DN. Since the water takes 95% of all the pixels in this scene, the graph had to be cut on the vertical axis for the land class 
to be visible.  
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In Fig. 21 we can see the results of the linear regression, both up to the depth of the 

best R2 value and up to the depth of extinction. Out of the 20,000 in-situ data points 

available, roughly 9,500 (48%) data points were below the depth of extinction and 

suitable for the linear regression calculation. In depths greater than the depth of 

extinction the model loses its ability to predict the water depth as the graph flattens 

at the log-band ratio of 1.020, indicating that this value signifies the light returning 

from the body of water and not from the bottom. 

 

 

 

 

Figure  20 : An analysis of the changes in R2 score with the increase of the depth of extinction. the best R2 was found at 6.9 
m, while depths of up to 11 m could also be used with a similar R2 score. 
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In the following figures, Figs. 22-25, we can see the results of the SDB layer at the 

study area. The Raster was transformed into contours of 1 m steps for the visual 

interpretation of the results. We can see that the contours tend to describe correctly 

the shape of the shorelines around the many islands as well as locate submerged 

structures that are invisible in a standard true colored image (Fig. 23). In figure 24 

we can see contours that correctly follow the islands at the north-west of the study 

area, over 150 km from the in-situ measurements. This would suggest some 

uniformity in the SDB. In Fig. 25 we can a multitude of contours around a submerged 

structure, possibly pointing to noise from turbulence or atmospheric sources.  

 

 

 

 

Figure  21 : The linear regressions used in this study area, both up to the depth that has the highest R2 score and up to the 
depth of extinction. At the Blue-Green band ratio of 1.020 the graph flattens, indicating light reflecting from the body of 
water and not the bottom. 
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Figure  22 : The SDB results around the various islands (location A in the overview map). The background image here is the 
panchromatic Landsat 8 image corresponding to the scene chosen for the SDB generation. We can see that the contours 
correctly follow the different shorelines and the SDB was also able to identify submerged islands at the north-east corner of 
this map. 
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Figure  23 : The SDB results at location B, set on a background of Google’s global imagery. We can see the contours 
following the shoreline of the inlets. 
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Figure  24 : The SDB results at location C, set against the panchromatic Landsat 8 image. Although this location did not 
contain any in-situ datapoints measurements and it was close to the borders of the study area, the SDB was nonetheless 
able to correctly follow the shape of the islands. Several submerged structures, nearly invisible to the naked eye, were also 
successfully mapped. 
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Figure  25 : The SDB results at location D, around a submerged structure. The multitude of contours may indicate noise from 
turbulence or artifacts created by the sensor. It could also be the effects of clouds or dust particles covering this location. 
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Bab el-Mandab 

The Bab el-Mandab straits study area at the entrance of the Red Sea has a 1:2 ratio 

of land to water as wet areas take about 30% of its pixels (Fig. 26). This area also 

contains a few islands, some at its north-west end and some close to the straits. 

The SDB process in this study area had a collection of six Landsat 8 scenes for its 

imagery input (path 166, row 51 on the WRS-2 coordinate system), all having less 

than 0.1% of cloud coverage.  

The in-situ dataset used for the calibration in this area was generated by John Hall 

and consisted of over 16,000 points, all of them inside the boundaries of the Landsat 

8 scene used here.  

 

 

Figure  26 : An overview of the Bab el-Mandab straits at the entrance to the Red Sea. This study area has 30% water coverage with a 
few islands. The pink points are the in-situ measurements that were available for the calibration and the red rectangle represents the 
limits of the Landsat 8 scene used here. The letters A-D are the locations of the figures 30-33, respectively. 
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The separation of pixels into water and land classes using Otsu’s method was 

successful. The threshold value was found be at 10,699 DN (Fig. 27).  

 

 

 

 

The scene which best fitted the in-situ dataset was taken on 17/05/2016. The linear 

regression had a maximum R2 score of 0.69 at a depth of 15.8 m (Fig. 28). Similar 

R2 scores are found up to depths of 20 m which was chosen as the depth of 

extinction with R2 score of 0.669. Beyond the depth of extinction, the R2 score drops, 

indicating that in these depths the linear model does not accurately correlate depths 

with the log-band ratio.   

 

Figure  27 : The results of Otsu's method for thresholding implemented on the SWIR band at the Bab el-Mandab straits. 
This method was successful in splitting the pixels into the two separate classes of land and water with a thresholding value 
of 10,699 DN.  
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In Fig. 29 we can see the results of the linear regression, both up to the depth of the 

best R2 value and up to the depth of extinction. Out of the 16,000 in-situ data points 

available, roughly 10,600 (66%) data points were below the depth of extinction of 20 

m and suitable for the linear regression calculation. In depths greater than the depth 

of extinction the model loses its ability to predict the water depth as the graph 

flattens at the log-band ratio of 1.020, indicating that this value signifies the light 

returning from the body of water and not from the bottom. 

 

 

 

Figure  28 : An analysis of the changes in R2 score with the increase of the depth of extinction. the best R2 was found at 
15.8 m, while depths of up to 20 m could also be used with a similar R2 score. 



46 
 

 

In the following figures, Figs. 30-33, we can see the results of the SDB layer at the 

study area. The Raster was transformed into contours of 1 m steps for the visual 

interpretation of the results. We can see that the contours tend to describe correctly 

the shape of the shorelines around the shoreline but there are several contours in 

the deeper water that seem to be inaccurate, as can be clearly seen in Figs. 32-33. 

These may be the results of unclear water or inconsistent in-situ measurements.  

 

 

 

Figure  29 : The linear regressions used in this study area, both up to the depth that has the highest R2 score and up to the 
depth of extinction. At the Blue-Green band ratio of 1.020 the graph flattens, indicating light reflecting from the body of 
water and not the bottom. 
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Figure  30 : The SDB results around the various islands at the north-west areas of the study area (location A in the overview 
map). We can see that the contours correctly follow the different shorelines, although it is unclear whether the contours 
south of islands really describe submerged structures or are artifacts from unclear waters 
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Figure  31 : The SDB results at location B, the Bab el-Mandab straits. Here the SDB contours follow the shorelines of both 
sides of the straits. Some contours that appear in the middle of the straits are probably an artifact from ships or clouds.  

B
asem

ap
: ©

 ESR
I 



49 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  32 : The SDB results at location C. The contours follow the shoreline and describe some submerged structures, 
although the high irregularity suggests that the SDB may be less accurate here. 
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Figure  33 : The SDB results at location D, following the shoreline. The contours that extrude into the water are an artifact 
deriving from unclear water or atmosphere.  
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Qatar 

In the study area covering Bahrain and northern Qatar there are several submerged 

structures, as well as small islands and long shorelines (Fig. 34). The area covered 

by water takes about 65% of the total pixels. 

The SDB process here had a collection of 23 Landsat 8 scenes for its imagery input 

(path 163, row 42 on the WRS-2 coordinate system), all having less than 0.03% of 

cloud coverage.  

The in-situ dataset used for the calibration in this area was generated by John Hall 

and consisted of over 34,000 points, 33,000 of them were inside the boundaries of 

the Landsat 8 scene used here.  

 

 

Figure  34 : An overview of the study area covering Bahrain and northern Qatar. This study area has 65% water coverage with a few 
islands and submerged structures. The pink points are the in-situ measurements that were available for the calibration and the red 
rectangle represents the limits of the Landsat 8 scene used here. The letters A-D are the locations of the figures 38-41, respectively. 
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The separation of pixels into water and land classes using Otsu’s method was 

successful. The threshold value was found be at 17,193 DN (Fig. 35).  

 

 

 

 

The scene which best fitted the in-situ dataset was taken on 09/09/2013. The linear 

regression had a maximum R2 score of 0.859 at a depth of 11.1 m (Fig. 36). Similar 

R2 scores are found up to depths of 15 m which was chosen as the depth of 

extinction with R2 score of 0.821. Beyond the depth of extinction, the R2 score drops, 

indicating that in these depths the linear model does not accurately correlate depths 

with the log-band ratio.   

 

Figure  35 : The results of Otsu's method for thresholding implemented on the SWIR band near Qatar and Bahrain. This 
method was successful in splitting the pixels into the two separate classes of land and water with a thresholding value of 
17,193 DN.  
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In Fig. 37 we can see the results of the linear regression, up to the depth of the best 

R2 value and up to the depth of extinction. Out of the 33,000 in-situ data points 

available, roughly 31,000 (93%) data points were below the depth of extinction of 15 

meters and suitable for the linear regression calculation. In depths greater than the 

depth of extinction the model loses its ability to predict the water depth as the graph 

flattens at the log-band ratio of 1.021, indicating that this value signifies the light 

returning from the body of water and not from the bottom. 

 

 

 

 

Figure  36 : An analysis of the changes in R2 score with the increase of the depth of extinction. the best R2 was found at 
11.1 m, while depths of up to 15 m could also be used with a similar R2 score. 
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In the following figures, 38-41, we can see the results of the SDB layer at the study 

area. The Raster was transformed into contours of 1 m steps for the visual 

interpretation of the results. We can see that the contours tend to describe correctly 

the shape of submerged structures, even those that are barely visible in a standard 

true color image (Fig. 38). The contours tend to follow the shorelines correctly but 

there seems to be a lot of noise in the deeper water, maybe due to turbulence or 

sediments. However, the contours in Fig. 41 were generated in an area which had 

over 5,000 in-situ measurement points and it is possible that they describe the 

bathymetry accurately. 

 

 

 

Figure  37 : The linear regressions used in this study area, both up to the depth that has the highest R2 score and up to the 
depth of extinction. At the Blue-Green band ratio of 1.021 the graph flattens, indicating light reflecting from the body of 
water and not the bottom. 
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Figure  38 : The SDB results around the various submerged structures south of Bahrain (location A in the overview map). 
These structures are barely visible to the naked eye, but the algorithm successfully identifies them. 
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Figure  39 : The SDB results at location B, between Qatar and Bahrain. Two large submerged structures were found by the 
SDB algorithm and the contours follow their outline. At the south-east corner of this figure we can see many irregular 
contours, indicating unclear water or atmosphere.  
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Figure  40 : The SDB results at location C, offshore Saudi Arabia. The contours follow the shoreline and the inlets as well as   
describing some submerged structures that are not visible otherwise.  
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Figure  41 : The SDB results at location D, near King Abdulaziz seaport. This area has a large density of in-situ data points, 
strengthening the accuracy of the algorithm.  
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Stage 2, part B: Calibrating by Tidal Data 

In this part of the study I tested a new method for calibrating the SDB in areas 

lacking in-situ data, relying on tidal data instead. I used the same SDB script as in 

Stage 2, part A for downloading the relevant spectral bands, separating land and 

water with Otsu’s method for thresholding, image processing and calculating the log-

band ratio. This process differs from part A in determining the best scene as it was 

pre-selected to fit a certain acquisition date and not automatically selected from the 

available Landsat 8 archive. The section of the script that followed the log-band ratio, 

i.e., the sampling and linear regression fitting was changed to a new work protocol. 

This new method was tested on two study areas, at the bay of Fundy in eastern 

Canada and near Broome in western Australia (Figs. 42 and 50, respectively). These 

areas were selected as they have a large tidal amplitude and a reliable, 

governmental source for past tidal measurements.  

 

The Bay of Fundy, Canada 

This study area, covered by the Landsat 8 scene of path 9, row 29 (the WRS-2 

coordinate system) is located at the bay of Fundy in eastern Canada (Fig. 42). In the 

port of Saint John is located the buoy by which the Canadian government regularly 

measures the tides in the bay. The tide data is published and made publicly available 

through the Fisheries and Oceans Canada website.   
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The tidal events that were used in this study were the low tide of 27/03/2019 at 14:49 

(UTC), reaching a minimum of 1.4 m and the high tide of 02/08/2019 at 16:24 (UTC) 

reaching a maximum of 8.2 m. For each of these dates a corresponding Landsat 8 

scene was selected that had an acquisition time close to those events – an hour 

before and after the high and low tide, respectively. Both of the scenes had less than 

0.5% cloud coverage. 

 

 

SDB algorithm calculation 

Both scenes, representing high and low tide, went through image processing and 

land/water separation using Otsu’s method for thresholding (Fig. 43). While we 

would expect that during high tides the number of water pixels will be higher than 

their low tide equivalence, there were 55% water coverage in low tide and 47% water 

coverage in high tide. This may be due to the seasonal changes as the low tide 

Figure  42 : The study area at the bay of Fundy, Canada. The red rectangle represents the boundaries of the Landsat 8 scene 
and the red star is the location of the buoy near Saint John that is used for tidal measurements. The letters A-C are the 
locations of the SDB result figures 47-49, respectively. 
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image was acquired at the wet season while the high tide image was acquired at the 

summer.  

 

 

Figure  43 : The results of Otsu's method for thresholding implemented on the SWIR bands at the bay of Fundy. The figure 
above is at high tide and the figure below is at low tide.  
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Gathering data points for calibration 

The location of the buoy (Fig. 42) provides a fixed location with known depths, as at 

low tide the depth was 1.4 m and at high tide the depth was 8.2 m. Using the results 

of the quotient of the log-band, I subtracted the areas covered with water at low tide 

from their high tide equivalence, resulting in areas that represent the shoreline during 

high tide (Fig. 44). These areas were assumed to have a depth of 1 m. After 

selecting from these pixels the areas which seemed to best describe the shoreline, I 

sampled them and generated a table of their values. 

 

 

 

 

 

Figure  44 : The shoreline at high tide. The red areas are dry during low tide and covered with water at high tide. I assumed 
that they had a depth of 1 m during high tide. Out of those areas I digitized some as datapoints for the calibration. 
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Calibration 

By digitizing the points of the shoreline at high tide I generated a datapoint table of 

2,900 points: A single point with the depth value of 8.2 m and the rest with a uniform 

depth of 1 m. These points were used for the linear regression whose parameters 

were the basis of the calibration. Since the depth points sampled at the shoreline 

had a large range of values (Fig. 45) the mean value of them (1.013) was chosen as 

the input. This may affect the outcome of the SDB and maybe different methods for 

reducing this range (choosing the pixels with higher occurrence, for example) could 

have better results. 

 

 

 

 

 

 

 

 

 The linear regression was applied to two points: one point at the buoy with depth of 

8.2 m and the other at the mean value of the shoreline with depth of 1 m (Fig. 46). 

Since the linear regression was between two points, there was no advantage in 

trying different, more robust regression methods. 

Figure  45 : The distribution of the pixel values at the shoreline. The mean value was at 1.013. 
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After I calculated the coefficients of this linear regression and applied them to the 

log-band ration array generated at the high tide, I subtracted from the resulting array 

the depth at the buoy of the low tide, thus receiving an array which represents the 

mean depths, i.e. the depths between high and low tide. This array was saved as the 

SDB GeoTIFF for the study area and transformed into contours. 

 

 

 

 

 

Figure  46 : The results of the linear regression between the tidal depth estimations and the log-band ratio of the high tide 
imagery. 
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SDB results 

The SDB seems to describe well the shapes of the shorelines around the study area 

(Fig. 47). Inside the canal near Saint John (Fig 48), where the measurements buoy is 

located, the depths match the mean depth, as expected. The depths become deeper 

at the exit of the canal, although without having more data their accuracy cannot be 

determined. There are several contours in the deeper water which seems to be less 

accurate (Fig 49). They may be a result of unclear water or atmosphere as well as 

representing the limits of the linear regression used here.  

 

 

 

 

Figure  47 : The results of the SDB at the south of the study area: the contours seem to correctly describe the shape of the 
shoreline. 
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Figure  48 : The results of the SDB at Saint John, close to the buoy (appears as a red star). The depths around the buoy are 
close to 6 m – matching the measurements. The depths at the rest of the canal are mainly 5 m, returning to 6 m and deeper 
at its exit. 
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Figure  49 : The results of the SDB at the west of the study area. While the contours follow well the shoreline, there are some 
contours in the deeper water that probably do not match the real depths. They may be the results of unclear water or the 
calibration data. 
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Broome, Australia 

This study area, covered by the Landsat 8 scene of path 111, row 72 (the WRS-2 

coordinate system) is located close to the city of Broome in western Australia. (Fig. 

50). The buoy by which the Australian government regularly measures the tides in 

this area is placed near the Broome wharf. The tidal data is published and made 

publicly available through the Australian Bureau of Meteorology website.   

The tidal events that were used in this study were the low tide of 03/04/2018 at 22:55 

(UTC), reaching a minimum of 1.31 m and the high tide of 13/08/2019 at 01:36 

(UTC) reaching a maximum of 7.52 m. For each of these dates a corresponding 

Landsat 8 scene was selected that had a close acquisition time. Both scenes had 

less than 0.1% cloud coverage. 

Most of this study area is covered by deep water, meaning that the SDB here was be 

relevant mostly for the shorelines and the inlets, as well as for the Lacepede islands 

(Fig 56). 

Figure  50 : The study area at the bay of Fundy, Canada. The red rectangle represents the boundaries of the Landsat 8 scene 
and the red star is the location of the buoy near Saint John that is used for tidal measurements. The letters A-C are the 
locations of the SDB result figures 55-57, respectively. 
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SDB algorithm calculation 

Both scenes, high and low tide, went through image processing and land/water 

separation using Otsu’s method for thresholding (Fig. 51). In both scenes the water 

takes about 84% of the total pixels, with 1% increase during high tide. This may be 

the result of the water covering more of the shore during high tide.  

 

 

Figure  51 : The results of Otsu's method for thresholding implemented on the SWIR bands near Broome. 
The figure above is at high tide and the figure below is at low tide.  
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Gathering data points for calibration 

The location of the buoy (Fig. 50) provides a fixed location with known depths, as at 

low tide the depth is 1.31 m and at high tide the depth is 7.52 m. Using the results of 

the quotient of the log-band, I subtracted the areas covered with water at low tide 

from their high tide equivalence, resulting in areas that represent the shoreline during 

high tide (Fig. 52). These areas were assumed to have a depth of 1 m. After 

selecting from these pixels the areas which seemed to best describe the shoreline, I 

sampled them and generated a table with their values. 

 

 

 

 

 

Figure  52 : The shoreline at high tide. The red areas are dry during low tide and covered with water at high tide. I assumed 
that they had a depth of 1 m during high tide. Out of those areas I digitized some as datapoints for the calibration – marked 
as blue points. 
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Calibration 

By digitizing the points of the shoreline at high tide I generated a datapoint table of 

770 points: A single point with the depth value of 7.52 m and the rest with a uniform 

depth of 1 m. These points were used for the linear regression whose parameters 

were the basis of the calibration. Since the depth points sampled at the shoreline 

had a large range of values (Fig. 53) the mean value of them (1.002) was chosen as 

the input. This may affect the outcome of the SDB and maybe different methods for 

reducing this range (choosing the pixels with higher occurrence, for example) could 

have better results. 

 

 

 

 

 

 

 

 

The linear regression was applied to two points: one point at the buoy with depth of 

7.52 m and the other at the mean value of the shoreline with depth of 1 m (Fig. 54). 

Since the linear regression was between two points, there was no advantage in 

trying different, more robust regression methods. 

 

Figure  53 : The distribution of the pixel values at the shoreline. The mean value was at 1.013. 
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After I calculated the coefficients of this linear regression and applied them to the 

log-band ration array generated at the high tide, I subtracted from the resulting array 

the depth at the buoy of the low tide, thus receiving an array which represents the 

mean depths, i.e. the depths between high and low tide. This array was saved as the 

SDB GeoTIFF for the study area and transformed into contours. 

 

 

 

 

 

Figure  54 : The results of the linear regression between the tidal depth estimations and the log-band ratio of the high tide 
imagery. 
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SDB results 

The SDB seems to describe well the shapes of the shorelines around the study area 

(Fig. 55) Near Broome, close to the buoy where the measurements took place, the 

depths match the mean tidal depth, as expected. The depths become deeper at the 

open sea and the contours end there as we pass the depth of extinction. There are 

several contours in the deeper water which seems to be less accurate (Fig. 56), 

although the shape of the shorelines and the submerged structures around the 

Lacepede islands seem to have an accurate shape. The contours at Fig. 57 seem to 

be less accurate as the depth increases. This may be a result of unclear water or 

atmosphere as well as representing the limits of the linear regression used here.  

 

 

 

 

Figure  55 : The results of the SDB near the measurements buoy (appears as a red star): the contours seems to correctly 
describe the shape of the shoreline.  
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Figure  56 : The results of the SDB close to the Lacepede islands. We can see that the contours describe well the shape of the 
islands’ shore as well as unseen structures at depths reaching to 7 m and beyond. Without further in-situ depth points we 
cannot asses the accuracy of the deeper contours. 
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Figure  57 : The results of the SDB at the north-east of the study area. While the contours follow well the shoreline at this 
inlet, there are some contours in the deeper water that probably do not match the real depths. They may be the results of 
unclear water or sediments. 
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Testing Different Fitting Methods 

The fitting method most often used in the SDB literature is a simple linear regression 

that aims to minimize the residual sum of squares between the observations and the 

predictions. In SDB terms, it minimizes the sum of squares between the in-situ depth 

measurements and the log-band ratio of a specific scene. This method is sensitive to 

outliers in the data since it gives the same weight to every point. In cases where 

error in the data is expected, other linear regression methods may show better 

results.  

I have tested two other linear regression methods on each of the four study areas 

with regards to the best scene that was selected during the SDB process (Fig. 58). 

Since the linear regression of the two study areas calibrated with tidal data had only 

two points, there was no need to test these methods in those areas as well.  

The results of the different methods are summarized in table 3: 

Study Area OLS Theil-Sen Huber 

Eilat 2.58 2.75 2.66 

Dahlak 2.44 2.47 2.48 

Bab el-Mandab 4.35 4.49 4.36 

Qatar 2.99 3.09 2.99 

Mean Error 3.09 3.2 3.12 

Table 3: A comparison between different linear regression method in the four study areas. The results are the RMSE of each 
method regarding the entire dataset of points. The 'ordinary' linear regression (OLS) seems to have the best results overall. 

 

It seems that in these four study areas there was no benefit of applying different 

linear regression methods as the RMSE does not show a clear preferred method. 

Furthermore, the ‘simple’ linear regression method, the OLS, achieved slightly better 

results overall. We need to consider that these tests were executed on scenes that 

were selected by the OLS method during the SDB script runs. It is possible that by 

applying a different regression method during the selection of the scenes, another 

scene would had been selected with lower RMSE in that specific method. 
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Figure  58 : A comparison of the different linear regression methods in the four study areas. The error was estimated in RMSE to better understand the 
amount of error regarding the depth of extinction. 
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Future Studies 

I believe that the SDB process that I have developed and used in this study may be 

further improved in future studies, specifically with regarding the following points: 

1. While Otsu’s method for thresholding had good results in separating the land 

and the water, there may be better methods for increasing its accuracy. This 

may influence the semi-wet pixels at the shorelines. 

2. Landsat 8 was a good choice for this study. It has a good searchable archive 

and good spatial and temporal resolution. However, there are currently other 

publicly available satellites which could improve the accuracy of the SDB. 

Sentinel 2, for example, has better resolution (10 m per pixels compared to 30 

m in Landsat 8) and offers bands in a similar wavelength, thus can be 

implemented in the SDB process. 

3. While the automatic, multithreaded, downloading of the scenes by my script 

reduced the time consumption of the SDB process, it relies on local internet 

bandwidth and thus is limited. Future studies should prefer working directly in 

the cloud resources, without downloading any data. This will have a dramatic 

improvement on the overall performance.  

4. In this study I tested several linear regression methods after selecting the best 

scene. These methods can be implemented as an integral part of the script. 

Moreover, recent studies (Cahalane et al., 2017) have used geographic 

weighted regression (Brunsdon et al., 1998) for the calibration, which could 

also be integrated into the SDB process. 

5. The tidal-based calibration can be further developed by adding more data 

points in the study areas, comparing different high and low tide events and 

testing it in areas for which there are in-situ measurements points for the 

accuracy estimations. 

6. The SDB algorithm could be improved by looking for correlation between 

other wavelengths and the depth. This should be tested with machine learning 

methods, mainly neural networks, on all the available bands in each scene.   
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Summary 

Satellite derived bathymetry (SDB) had been implemented increasingly in recent 

years thanks to the raise in computational abilities and the large amounts of 

accessible imagery data. This tool offers the ability to map the shallow waters of 

earth in a relatively cheap and fast manner.  

In this research I improved an SDB method by developing a scripted, automated 

process which uses publicly available cloud data and free, open sourced tools, to 

generate SDB on a large scale. I tested this process on four study areas and the 

results show a relatively high accuracy by comparing them to in-situ depth 

measurements. 

The ability to rapidly map areas lacking in-situ data was also tested in this study as I 

developed a calibration method which relies on tidal amplitudes and comparison of 

differences of shorelines between high and low tide. This method shows promising 

results and it could be further developed to improve its accuracy.  
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