Evolution Of Normal Faults Based On Displacement Patterns: A Case Study From The Eastern Levant Basin, Israel

Nadav Navon¹, Amotz Agnon¹, Benjamin Medvedev^{1,2}

Institute of Earth Sciences, The Hebrew University, Jerusalem 91904, Israel
 Schlumberger Petroleum Services, Parkstraat 83 Den Haag, the Netherlands

1. Introduction

The Plio-Pleistocene section of "Gabriella" 3D seismic survey, located at the eastern Levant Basin, is incised by numerous fault systems. These consist of growth faults accompanied by synthetic and antithetic faults, some of which overlay the Israel Slump Complex¹ (ISC). Displacement patterns allow to distinguish between post- and syn-depositional faults. We present a workflow to investigate the evolution of these faults by analyzing their displacement patterns.

4. Results

Seismic Interpretation

Fault 3 500m Fault 3

Fault traces from -464m and projected down to -1200m depth and to "Mavqi'im" structural map. Only Fault 3 incises both the ISC head scarp and the evaporitic layer.

2. Research Goals

- Recapture the evolution and the propagation history of normal faults based on quantitative displacement analysis.
- Explore the interactions between fault displacement patterns and the chaotic structures incised by them.

3. Methods

<u>1. Throw vs. Depth plots (T-Z plots)</u>

Fault 2- Blind pattern

Each panel shows T-Z plot (left) and E.I with relevant

Fault 3- Growth pattern

Key horizons *a-i* followed by displacement measurements.

2. Expansion Index (E.I)

Slope angle

seismic section (right).

Throw values increase with depth from horizon *a* to horizon *h*.

5. Highlights

Maximum throw values measured at horizon *e*.

3. Displacement Contour Diagram (DCD)

DCD patterns for post²- and syn-depositional³ faults. Modified after Walsh & Watterson (1990) and Childs et al., (2002).

- A sample of four faults yields four different displacement patterns.
- Chaotic structures control fault evolution, recorded as abrupt changes in displacement values resulting in irregular displacement patterns.
- Combining data from neighboring wells and fault DCDs allows to estimate the ages of onset and growth phases: 0.5-0.71 Ma.

6. References

- 1. Martinez, J. F., Cartwright, J., & Hall, B. (2005). 3D seismic interpretation of slump complexes: Examples from the continental margin of Israel. Basin Research, 17(1), 83–108. http://doi.org/10.1111/j.1365-2117.2005.00255.x k
- Walsh, J. J., & Watterson, J. (1990). Displacement gradients on fault surfaces. Journal of Structural Geology, 11(3), 307–316. http://doi.org/10.1016/0191-8141(89)90070-9
- 3. Childs, C., Nicol, A., Walsh, J. J., & Watterson, J. (2002). The growth and propagation of synsedimentary faults. *Journal of Structural Geology*, 25(4), 633–648. http://doi.org/10.1016/S0191-8141(02)00054-8

We would like to thank Adira Energy for providing the seismic data.

leev Center for Geoinfomatio