החוג לגיאולוגיה המכון למדעי כדור הארץ הפקולטה למדעי הטבע האוניברסיטה העברית בירושלים

25.12.2013 כ"ב טבת תשע"ד

בהדרכת: פרופ' עמוס פרומקין פרופ' אמוץ עגנון פרופ' רם וינברגר

והתרוממות מחדר המלח של הר סדום, ישראל

עבודת גמר לתואר מוסמך במדעי הטבע מוגשת על ידי:

אלחנן צוקר

הדפורמציה של "ראי המלח"

הדפורמציה של "ראי המלח" והתרוממות מחדר המלח של הר סדום, ישראל

עבודת גמר לתואר מוסמך במדעי הטבע מוגשת על ידי:

אלחנן צוקר

בהדר**כ**ת:

פרופ' עמוס פרומקין פרופ' אמוץ עגנון פרופ' רם וינברגר

25.12.2013

כ"ב טבת תשע"ד

החוג לגיאולוגיה המכון למדעי כדור הארץ הפקולטה למדעי הטבע האוניברסיטה העברית בירושלים

תקציר

טקטוניקת מלח ותהליכי דפורמציה החלים במהלך עלייתו של מחדר מלח חשובים למגוון של נושאים כגון איתור מלכודות הידרוקרבונים, הטמנת פסולת רעילה ולמחקר הראולוגיה של סלעים אבפוריטים. אולם התנועה היחסית בין יחידות המלח ותהליכי דפורמציה במהלך עלייתם של מחדרי מלח אינם ידועים היטב. הר סדום הינו מחדר מלח חשוף באגן ים המלח, ובו סמן סטרוקטורלי הידוע כ"ראי המלח". "ראי המלח", שנוצר כמשטח המסה תת-אופקי בטווח זמן קצר יחסית (בערך לפני 14,000 שנים) מעל יחידות המלח של תצורת סדום, הינו בר מיפוי במחשופים, יחסית (בערך לפני 14,000 שנים) מעל יחידות המלח של תצורת סדום, הינו בר מיפוי במחשופים, ארובות ומערות. לכן ניתן לעקוב בעזרתו אחר הדפורמציה הפנימית שהתפתחה במחדר המלח מאז התקבעותו. גובה "ראי המלח" ניתן למדידה בדיוק של עד 1 מטר בעזרת מכשיר -GPS מאז התקבעותו. גובה "ראי המלח". בעזרת מפה זו נותח המבנה הפנימי של מחדר המלח.

תוצאות המחקר מצביעות על התרוממות הר סדום תוך כדי החלקת יחידות המלח זו כנגד זו, בצורת אנטנה טלסקופית א-סימטרית (בחתך מערב-מזרח). בעזרת הנתונים החדשים שנאספו חושב קצב התרוממות ממוצע של 11 ± 0.03 מילימטרים בשנה מאז יצירת המשטח לפני 14,000 השנים האחרונות. כמו כן נמצא כי טופוגרפית פני השטח המכסה את מחדר המלח מרמזת בצורה טובה על מבנה המחדר בעומק. באמצעות "ראי המלח" חושב גרדיינט העתקה של 20.02±0.00 טובה על מבנה המחדר בעומק. באמצעות "ראי המלח" חושב גרדיינט העתקה של 20.02 טובה על מבנה המחדר בעומק. באמצעות "ראי המלח" חושב גרדיינט העתקה של 1700±0.3 בשוליים המזרחיים (<300 מ') של ההר ו-2.21 (לאורך 1652 מ'). לפיכך, "ראי המלח" בהר סדום גרדיינט מהירות העתקה של $\left[\frac{1}{sec}\right]^{11}$ 2.2*e*⁻¹³ (לאורך המלח לאורך ההיסטוריה ההולוקנית שלו והתהליכים המתרחשים בו כיום.

תודות

ברצוני להודות למנחים שלי פרופ' עמוס פרומקין ופרופ' אמוץ עגנון מהאוניברסיטה העברית ופרופ' רמי וינברגר מהמכון הגאולוגי על אוזן קשבת, רעיונות, הדרכה, הכוונה ואווירה מדעית ואקדמית לאורך כל שלבי המחקר. תודה על אחת מהחוויות היותר מאתגרות, משכילות ומדהימות שעברתי בחיי.

תודה לחברי הוועדה המלווה פרופ' אברהם סטרינסקי ופרופ' יהודה אנזל על הזמינות, הדאגה והאוזן הקשבת בכל עת.

תודה לאנשי המלח"ם, בועז לנגפורד ושמש יערן על התמיכה, הציוד והעזרה המקצועית בשטח ובמשרד.

תודה לאנשי המכון הגאולוגי: יואב בועז, בת-שבע כהן, יואב נחמיאס, גלינה פיירשטין, ויהודה שלם על העזרה המקצועית והלוגיסטית. תודה מיוחדת נתונה להלל לוצקי על לילות כימים שעשה עימי ועל העזרה התמידית והחברית לאורך המחקר בהתלבטויות אקדמאיות שונות, בשגרה ואף תוך נטילת סיכונים.

תודה לאסף צבר שתרם מהידע שלו בעבודת ה-EDM, ארוחות במפעלי ים המלח והתמונות המהפנטות.

תודה לכל חברי מהאוניברסיטה העברית אשר עזרו בשטח, בהכנת המפות, במשרד, מילות העידוד והחברויות: ידידיה גלמן, מטיאס גרויסמן, גל יסעור, אלעד לבנון, יובל לוי, שלו סימן-טוב, אימרי עוז, נדב פלג, אלישבע פלדור, ענר פלדור, יאיר רינת. תודה לאנשי מזכירות המכון למדעי כדור הארץ: מגי פרקין, בתיה משה, אנה זוקובסקי, קרן שושנה ויוסי שרר על כל העזרה. בנוסף ארצה להודות לכל מרצי, מלמדי וחברי אשר יתכן ושמותיהם נשמטו מרשימה זו.

תודה למשפחתי ולמשפחת אשתי אשר עזרו הן בשטח והן בכתיבה, ואיפשרו לי להחסיר ימים ולילות על מנת שאוכל להתקדם במחקר: הורי - ארני ודבי, הורי אשתי - ריצ'י וג'ולי ושאר בני משפחתי - אהרן ועדינה, יונה ומישל, עודד, תמר, יהושע, אבישי, שלמה, שרה, ג'סי, שאול, חוה ודני, טלי, שמואל, הרווי ופוצ'ר.

אחרונים חביבים, והכי חשובים, ארצה להודות לאשתי, תמי, וילדי האהובים – נעמה, איילה, איתי והלל אשר תמיד גילו עניין בעבודתי ורצונם לצאת איתי לשדה. לאשתי, אשת חיל, שתמכה לאורך כל הדרך, אשר לא הפסיקה לדחוף להצלחתי, לעודד, להבין את היעדרויותיי התכופות, להחזיק את המשפחה ואת הבית באופן מופתי כאילו ללא מאמץ ופשוט להיות החברה הכי טובה שיש.

מחקר זה מומן על ידי המכון הגאולוגי בתוספת מימון מקרנות מחקר של פרופ' עמוס פרומקין ופרופ' אמוץ עגנון.

III

תוכן העניינים

3		1. רקע
5	היסטוריה גאולוגית של תצורת סדום וחבורת ים המלח	.1.1
7	היווצרות "ראי המלח" וסלע החיפוי	.1.2
8	תכונות סלע המלח	.1.3
9	מבנה הר סדום, שלבים בהתרוממותו וקצבי עליה	.1.4
11	דיאפירי מלח בעולם	.1.5
12	ת המחקר	2. מטר
14	רים ושיטות	3. חומו
14	עבודת שדה	.3.1
17	עיבוד נתונים	.3.2
18	ניתוח מבנים	.3.3
19	חישוב קצב התרוממות	.3.4
20	אות	4. תוצא
20	מבנה "ראי המלח"	.4.1
31	השוואה בין "ראי המלח" לטופוגרפיה של הר סדום	.4.2
36	השוואת קצבי עלייה בהר הדרומי לנקודות מפתח בהר הצפוני	.4.3
39		5. דיון.
39	הדפורמציה של "ראי המלח" ומשמעויותיה	.5.1
40	האם מבנה "ראי המלח" דומה לטופוגרפיה של הר סדום?	.5.2
41	קצב עליית הר סדום במשך תקופת ההולוקן	.5.3
41	5. קצבי עלייה בהר סדום הדרומי5	.3.1
43	5. קצבי עלייה בהר סדום הצפוני5	.3.2
45	מות	6. מסק
46	יוגרפיהיוגרפיה	7. ביבי
51	n	8. נס פו

רשימת איורים

יור 1: מפת מיקום גיאוגרפי של הר סדום
6
יור 3: "ראי המלח" כפי שהוא מופיע במורדות הדרומיים של הר סדום
יור 4: שכבות דקות ושבורות והדפסים של שכבות אלו בקיר המחצבה של הר סדום
יור 5: איור סכמטי המדגים שני מקרי קצה למבנה מחדר המלח של הר סדום
יור 6: מפת נתוני ליידר מוטס מגיחת 2013
יור 7: מפת פתחי המערות בהר הדרומי
יור 8: חישוב גרדיינט העתקה בהר סדום
יור 9: מפה סטרוקטורלית של "ראי המלח" שעובדה בשיטת האינטרפולציה "Neighbor Natural"
יור 10: מפה סטרוקטורלית ומפת קונטורים של "ראי המלח" שעובדה בשיטת האינטרפולציה "IDW"
המתייחסת להעתקים החוצים אותה
יור 11: מפת מיקום החתכים שנמדדו לרוחב דרום הר סדום
יור 12: חתכים החוצים את הר סדום מזרח-מערב
יור 13: תמונה של "ראי המלח" מעל מערת מלח"ם, ערוץ צפוני, במבט מצפון
יור 14: מפה סטרוקטורלית של "ראי המלח" שעובדה בשיטת האינטרפולציה IDW באזור מערת
מלח"ם
יור 15: מפת מיקום חתכים באזור מערת מלח"ם
יור 16: חתך 'D-D העובר דרך אזור מערת מלח"ם ומציג את פני השטח ואת "ראי המלח"
בשיטת IDW
יור 17: חתך 'E-E העובר דרך אזור מערת מלח"ם ומציג את פני השטח ואת "ראי המלח"
בשיטת IDW
יור 18: הקשר בין גובה "ראי המלח" לטופוגרפיה של הר סדום לפי כלל הנקודות שנמדדו
בתחילת המחקר. הטופוגרפיה כאן היא לפי הנתונים של גו'ן הול
יור 19: הקשר בין גובה "ראי המלח" לטופוגרפיה של הר סדום לפי כלל הנקודות שנמדדו
יור 20: מפת מיקום אזורים לצורך השוואה מדוקדקת בין מבנה "ראי המלח" לבין פני השטח
יור 21: הקשר בין גובה פני השטח לגובה "ראי המלח" באזור מערת מלח"ם
יור 22: הקשר בין גובה פני השטח לגובה "ראי המלח" באזור הדרומי והמרכזי-מערבי של הר
סדום הדרומי
יור 23: מיקום כלל הנקודות שנמדדו במחקר זה
יור 24: איור סכמטי המדגים את אופן עליית המחדר בעזרת הנתונים ממחקר זה וידע
ממחקרים קודמים
יור 25: חתכי רוחב סכמתיים המדגימים שתי היפותזות לאופי עליית המחדר ביחס לפני השטח
42

רשימת טבלאות

36	1: נתוני 29 נקודות המדידה מההר הצפוני	טבלה
38	2: תוצאות גרדיינט העתקה וגרדיינט מהירות העתקה	טבלה
44	3: טבלת קצבי התרוממות ההר מ- Weinberger, et al., 2006a, כולל מחקר זה	טבלה

נספח

51-63	הדרומי	מההר	המדידה	52 נקודות	1: נתוני 1	נספח
-------	--------	------	--------	-----------	------------	------

1. רקע

בקע (טרנספורם) ים המלח הינו גבול לוחות פעיל שלאורכו העתקה שמאלית של כ-105 ק"מ מאז המיוקן המוקדם (Freund, et al., 1970; Quennell, 1959; Joffe & Garfunkel, 1987) . מקובל שאגן ים המלח נוצר באזור בו קיים דרוג שמאלי לאורך הטרנספורם, והשילוב עם תנועת מקובל שאגן ים המלח נוצר באזור בו קיים דרוג שמאלי לאורך הטרנספורם, והשילוב עם תנועת ההעתקה השמאלית גרם להיווצרות שקע דמוי מעויין הידוע כ-"pull-apart basin" (איור 14). אגן ים המלח תחום ממזרח וממערב בסדרות של העתקי מדרגה המנמיכים את החתך כלפי מרכז Sagy, et ; Ben-Avraham, 1997; Garfunkel & Ben-Avraham, 1996; 1983 . (al., 2003).

לאורך בקע ים המלח, מהכנרת ועד ים המלח, זוהו מספר מחדרים אבפוריטים מתקופת הנאוגן (סיכום אצל Weinberger, et al., 2006a). על אף שכיחותם של סלעים אבפוריטים בחתך הגיאולוגי של הבקע, מספר המחשופים של סלעים אלו מצומצם וביטויים בנוף קטן. לדוגמה, חצי האי ליסאן שוכן מעל למבנה של מחדר מלח גדול (דיאפיר הליסאן) שמתרומם אל עבר פני השטח האי ליסאן שוכן מעל למבנה של מחדר מלח גדול (דיאפיר הליסאן) שמתרומם אל עבר פני השטח אך לא נחשף בפניו (ברטוב, 1999; 1950, 1951) (דיגופים אבפוריטים אחרים הקבורים בעומק רב ישנם מספר גופים אבפוריטים נוספים בעומק רדוד וגופים אבפוריטים אחרים הקבורים בעומק רב (AI-Zoubi & ten Brink, 2001; Neev & Hall, 1979).

אזור המחקר, הר סדום, משתרע בחלקו הדרום-מערבי של אגן ים המלח. ההר משתרע מצפון לדרום לאורך כ-10 ק"מ ורוחבו עד-2 ק"מ (איור 1C). ההר הינו ביטוי בפני השטח למחדר מלח שעולה מאז תקופת הפלייסטוקן (זק, 1967 ;איור 1D), ואשר חדר דרך היחידות הסדימנטריות שהורבדו מעליו (Vroman, 1951).

התנועה היחסית בין יחידות המלח ותהליכי דפורמציה במהלך עלייתם של מחדרי מלח אינם ידועים היטב. המצאותו של סמן סטרוקטורלי בתוך מחדר המלח של סדום מאפשר לעקוב אחר הדפורמציה הפנימית שהתפתחה בו מאז התקבעותו.

תבליט (DTM) של דרום מערב ים המלח ומיקומם של האזורים השונים בהר סדום Weinberger, et al., אחרי) האזור -nms .(2006a

הצפוני, cms- האזור המרכזי ("הצוואר" לפי זק, 1967), sms- האזור הדרומי. בצפון מזרח האזור הדרומי ממוקמת מחצבת המלח. (D)- חתך רוחב סכמטי A'-A דרך האזור הדרומי של הר סדום. L- תצורת הלשון. -Sb - עמורה (פרט עליון). A- תצורת עמורה. S- תצורת סדום: Sk- מלח ופצלי הכרבולת, SI- מלח לוט. -Sb-פצלי בנות לוט. Sm- מלח מערת סדום. Sh- פצלים ומלח החוף. האות "c" בסוף פרט מסמנת את סלע החיפוי שמעליו. EG- עין גדי (Weinberger, et al., 2006a).

0

0.25 0.5 km

1.1 היסטוריה גיאולוגית של תצורת סדום וחבורת ים המלח

סלעים אבפוריטים שקעו בבקע ים המלח כתוצאה מאידוי מי ים בתקופת המיוקן המאוחר – הפליוקן המוקדם. במשך כמה מאות אלפי שנים, חדרו מי ים לבקע ים המלח ויצרו באזור הפליוקן המוקדם. במשך כמה מאות אלפי שנים, חדרו מי ים לבקע ים המלח ויצרו באזור המשתרע מדרום הכנרת ועד דרום ים המלח את מפרץ סדום. המפרץ עבר מחזורים של הצפה המשתרע מדרום הכנרת ועד דרום ים המלח את מפרץ סדום. המפרץ עבר מחזורים של הצפה במי ים, שהותירו עם התאדותם משקעי אבפוריטים. השתפלות הבקע אפשרה כניסה חוזרת Zak & Freund, (שליב, 1991; 1991, 2013)
 זונשנית של מי ים שהתאדו והשקיעו שכבות אבפוריטיות נוספות (שליב, 1991; 1991, 2013)
 נושנית של מי ים שהתאדו והשקיעו שכבות אבפוריטיות נוספות (שליב, 1991; 1991, 2013)
 שחזרו על מי ים שהתאדו והשקיעו שכבות גרמו להצטברות רצף שכבות מלח בעובי של עד 2 שחזרו על עצמם מספר רב של פעמים, גרמו להצטברות רצף שכבות אלו מוכרות כיום בשם קילומטרים בחלק מבקע ים המלח (Weinberger, et al., 2006a).

תצורת סדום בנויה מסלעים אבפוריטים שונים בעובי של כ-1-2 קילומטרים, ומכילה גם יחידות דטריטיות (זק, 1967). הר סדום בנוי ברובו מתצורה זו. זק (1967) חילק אותה לחמישה פרטים: מלח ופצלי הכרבולת, מלח לוט, פצלי בנות לוט, מלח מערת סדום ופצלים ומלח החוף (איור 2). Kashai & Croker, זם המלח נמצא גג תצורת סדום בעומק של כ-5.5 קילומטרים (Kashai & Croker, במרכז אגן ים המלח נמצא גג תצורת סדום בעומק של כ-1.5 קילומטרים (1967). בהר סדום מונחים מעל התצורה "סלעי החיפוי" שהינם שרידים בלתי מסיסים מתוך (1987). בהר סדום מונחים מעל התצורה "סלעי החיפוי" שהינם שרידים בלתי מסיסים מתוך התצורה, שנותרו לאחר המסת המלח (ראה סעיף 1.2 להלן, היווצרות "ראי המלח" וסלע החיפוי) או יחידות של סלעים קלאסטיים (תצורות עמורה, חמרמר/סמרה והלשון) אשר הצטברו בבקע בתקופת הפלייסטוקן (זק, 1967; 1967) (Vroman, 1987).

1.4 בראש ההר המרכזי ("הצוואר") והצפוני (איור 1C – cms ו- cms בהתאמה; ראה סעיף 1.4 להלן, מבנה הר סדום) מונחת תצורת עמורה באי התאמה זוויתית על תצורת סדום ועל סלעי החיפוי, ואילו לאורך צלעות ההר כולו המגע ביניהן הוא בהעתק חדירה (איור 1D). סלעי תצורת סדום התרוממו וחדרו לתוך סלעי תצורת עמורה ולעיתים אף הרימו והיטו אותם. תצורת עמורה מורכבת מחוואר קרטוני למינרי ופצלי, אנהדריט וגבס, מלח, חול וקונגלומרטים. עוביה למעלה מ-400 מטרים. תצורה זו משקפת את ניתוק לגונת סדום מן הים הפתוח לאחר תום השקעתה של תצורת סדום ויצירה של שקע טקטוני נמוך המנקז את סביבתו ובו אגם סגור (זק, 1967).

תצורת הלשון עשויה קרטון (ארגוניט כימי), חוואר, חול וקונגלומרטים. בסביבתו של הר סדום עוביה של התצורה עד 35 מטרים (זק, 1967). באזורים שונים בהר מופיעות גבעות משאר של משקעי תצורת הלשון (איור 1D) אשר מכוסים לעתים על ידי משקעים נחליים המאוחרים לתצורת הלשון. שני סוגי המשקעים יושבים באי התאמה זוויתית וארוזיבית מעל שכבות תצורות סדום ועמורה, או מעל השארית הבלתי מסיסה של שכבות המלח - "סלעי החיפוי" (זק, 1967).

1.2 היווצרות "ראי המלח" וסלע החיפוי

סלעי החיפוי הם סלעים שאריתיים קשי תמס במים. הם נותרו מתוך מסה של שכבות מלח ואנהידריט שהומסה ונשטפה על ידי מי תהום או מי אגם בלתי רוויים למלח בעת עלייתם מתת הקרקע אל פני השטח (זק, 1967). סלעי החיפוי יוצרים מעין מעטפת המכסה את סלע המלח מלמעלה ובמקומות את המדרגות הבונות את צלעותיו (Bruthans, et al., 2000). בין סלעי החיפוי לסלע המלח שמתחתם מפריד מישור ברור המכונה "ראי המלח" (זק, 1967; Frumkin, 2009; איור 3). בראשית ימיו היה "ראי המלח" מישור חד וחלק (Vroman, 1951). תהליך ההמסה שיצר את סלעי החיפוי מאפשר להניח ש"ראי המלח" היה אופקי בקירוב בשעת היווצרותו, או שהייתה לו נטייה מקורית ראשונית בכיוון זרימת מי התהום (Farkas, et al., 1951). מתחתיו מונחות יחידות מלח עבות של תצורת סדום ומעליו מונחים באי התאמה סלעי חיפוי בעובי של עד 50 מטר (זק, 1967; פרומקין, 1992). "ראי המלח" החל להיווצר ככל הנראה בפליסטוקן, עם הגעתן של יחידות המלח אל מי תהום תת-רוויים למלח קרוב לפני קרקעית אגם עמורה (Zak &) Freund, 1980). אגם עמורה השקיע את תצורת עמורה וחמרמר מעל סלע החיפוי שהמשיך להיווצר עקב המסת מחדר המלח העולה עד שהאגם הוחלף על ידי אגם הלשון. מ-70,000 שנה ועד ההולוקן מפלס אגם הלשון עבר שינויי גובה של למעלה מ-100 מטר מספר פעמים (Bartov,et al., 2006; Lisker et al., 2009). שינויי מפלס אלו השפיעו על המסה של יחידות המלח והיווצרות "ראי המלח"; כאשר מפלס מי אגם הלשון היו גבוהים יותר מגובה המחדר תהליך ההמסה של יחידות המלח התחיל מחדש/נמשך ואיתה היווצרות "ראי המלח". ירידת מפלס מי Farkas, et al.,) "האגם מתחת לשיא הגובה של המחדר הפסיק את ההמסה ויצירת "ראי המלח 1951). כל עוד התקיים תהליך המסה ויצירת "ראי המלח" התאפשרה השקעה מעל של סלע חיפוי צעיר. מכאן ש"ראי המלח" יכול לשמש כסמן סטרוקטורלי רק כאשר בזמן גאולוגי ידוע מפלס אגם הלשון נסוג אל מתחת לגובה המחדר ובעקבות כך המישור התאבן. ישנם מספר שלבים ועדויות של חשיפת מחדר המלח מעל מפלס האגם וקבורתו החוזרת מתחת לפני אגם הלשון ראה סעיף 1.4 להלן, מבנה הר סדום). תארוכים בגבעה הלבנה (איור 1C) בתצורת הלשון הראו (כי המחדר היה מכוסה במי האגם לפני 30,000 עד 14,000 שנה (Weinberger, et al., 2006a; Bartov, et al., 2002). "ראי המלח" התאבן בסוף תקופת הלשון עם נסיגת האגם בין 14,000 ל-Yechieli, et al., 1993; Frumkin, 1996b; Stein, 2001; Bartov, et al.,) שנה (11,000 2006), כאשר בתקופה זו מחדר המלח כבר נמצא מעל גובה 280 מתחת לפני הים (Weinberger, et al., 2006a). מאותו שלב ואילך, תנועות אנכיות של גוף המלח בהר סדום לאורך העתקי החלקה בין-שכבתיים ותוך-שכבתיים גורמות לדפורמציה (הסטות, הטיות) במישור החלק של "ראי המלח". ההסטות המצטברות, כפי שהן מתבטאות ב"ראי המלח", מגיעות לעשרות מטרים (Zak & Freund, 1980). מכאן, שאופיו וצורתו של "ראי המלח" משקף את הדפורמציה ההולוקנית בהר סדום. למעט מחשופים בודדים, שרובם נמצאים בצידו המזרחי של הר סדום (בסמוך לכביש 90), המשטח המעוות של "ראי המלח" אינו מוכר היטב עקב העובדה שרובו חבוי מתחת לסלעי החיפוי וניתן לזיהוי בשולי ההר ובמערות המלח בלבד. מיפוי ואפיון "ראי המלח" במחשופים ובמערות יתרום להבנת תהליכי הדפורמציה שהתרחשו ועדיין מתרחשים בהר סדום.

איור 3: "ראי המלח" (מסומן בחץ) כפי שהוא מופיע במורדות הדרומיים של הר סדום. מתחת ל"ראי המלח" מונח סלע המלח האפור (תצורת סדום) ומעליו מונח סלע החיפוי הצהבהב-אפרפר. אדם בצד שמאל של התמונה מהווה קנה מידה.

1.3 תכונות סלע המלח

התרוממותו של מחדר מלח סדום ומחדרים אחרים בעולם התאפשרה בזכות שתי תכונות המייחדות את סלע המלח על פני סלעים אחרים: התכונה הראשונה היא שינוי צורתו של הסלע תחת לחץ מתון ונטייתו "לזרום", אם גם באטיות רבה (Carter, et al., 1982, 1993). בשונה מסלעים פריכים (brittle), שמופעל עליהם כוח גזירה ובעקבות כך הם נשברים, סלע מלח מתנהג מסלעים פריכים (Talbot & Aftabi, 2004) שמופעל עליהם כוח גזירה ובעקבות כך הם נשברים, סלע מלח מתנהג כחומר משיך (Talbot & Aftabi, 2004). עדויות לזרימה מסלעים פריכים (ductile). עדויות לחימה כוח גזירה ובעקבות כך הם נשברים, סלע מלח מתנהג מסלעים פריכים (ductile). עדויות לחימה כוח גזירה ובעקבות כך הם נשברים, סלע מלח מתנהג כחומר משיך (ductile). עדויות לחימה כוח גזירה ובעקבות כן מצוא במספר אתרים בהר, אחד מהם הוא בתנאי לחץ וטמפרטורה לא גבוהים במיוחד ניתן למצוא במספר אתרים בהר, אחד מהם הוא מחצבת המלח בהר סדום (איור 1C). במחצבה, בין שכבות המלח העבות, מצויות שכבות דקות ושבורות של דולומיט ופצלים. שכבות הדולומיט התארכו על ידי שבירה וסיבוב גושים כאשר המלח בשבורות של דולומיט ופצלים. שכבות הדולומיט התארכו על ידי שבירה וסיבוב גושים כאשר המלח זורם בהתאם, אל בין השכבות הפריכות השבורות (איור 4) ומאחה אותם (Autor 2015). גרם לסמ"ק 1980). התכונה השנייה המייחדת את סלעי המלח, היא צפיפותם הנמוכה - 2.15 גרם לסמ"ק 1980). התכונה השנייה המייחדת את סלעי המלח, היא צפיפותם הנמוכה - 2.15 גרם לסמ"ק (מסלי 1980).

אשר נשארת קבועה עם העומק (Hudec & Jackson, 2007), לעומת 2.30-2.70 גרם לסמ"ק -הערך האופייני של רוב סלעי המשקע הקבורים בעומק.

הצטברות הסדימנטים בבקע הפעילה לחץ מתגבר על סלעי המלח בעומק וגרמה לתחילת זרימתם. סלעי המלח אשר נמצאים באזור בעל היפוך צפיפויות (סלעי המלח הינם בעלי צפיפות נמוכה ביחס לסלעי המשקע שנקברו מעליהם) התחלו לזרום לטרלית עד הגעה לאזור שבור המאפשר עליה לכיוון פני השטח (ראה סעיף 1.4 להלן, מבנה הר סדום).

איור 4: שכבות דקות ושבורות של דולומיט ופצלים בתוך מסה של מלח (שמאל) והדפסים של שכבות אלו (ימין) בקיר המחצבה בצידו המזרחי של הר סדום (ימין) בקיר המחצבה בצידו המזרחי של הר

1.4 מבנה הר סדום, שלבים בהתרוממותו וקצבי עליה

על פי מאפיינים גיאוגרפיים וסטרוקטורליים, ניתן לחלק את הר סדום לשלושה אזורים עיקריים (nms, cms, sms -C1):

- א. האזור הדרומי של הר סדום (sms), מורכב משכבות אנכיות של תצורת סדום. באזור זה מגיע ההר עד לרום המירבי שלו (164 מטר מתחת לפני הים). באזור זה נחשף העובי המירבי של תצורת הלשון, באתר הידוע בשם "הגבעה הלבנה" (194 מטר מתחת לפני הים)(איורים 1C ו-1D).
- ב. האזור הצפוני של הר סדום (nms), מורכב בחלקו משכבות שעברו הטייה ניכרת (> 90°). אזור זה מגיע לרום של 190 מטר מתחת לפני הים. אזור זה צר יותר, בכיוון מזרח-מערב, מהאזור הדרומי.
- ג. האזור המרכזי של הר סדום ("הצוואר"/cms). אזור זה מחבר את האזור הצפוני לאזור דרומי ומאופיין בקמטים בעלי אורכי גל שונים.

ניתוח נתונים סייסמיים מלמד שיחידות המלח של הר סדום החלו לזרום כאשר עובי השכבות שהצטברו מעל תצורת סדום היה כ-2-2.5 קילומטרים (Weinberger, et al., 1997). המלח החל לזרום לטרלית בקצב של מילימטרים אחדים בשנה, כאשר הלחץ על שכבות המלח היה גדול דיו (Hudec & Jackson, 2007). במשך מאות אלפי שנים נע המלח קילומטרים אחדים, עד שהגיע לאזור שבור על ידי העתקי השוליים המערביים של אגן ים המלח. העתקים אלו מהווים מישורי לאזור שבור על ידי העתקי השוליים המערביים של אגן ים המלח. העתקים אלו מהווים מישורי לאזור שבור על ידי העתקי השוליים המערביים של אגן ים המלח. העתקים אלו מהווים מישורי לפיכך נראה שמלח במרכז הבקע נלחץ והתחיל להתרומם בשוליו דרך מישורי החולשה לפיכך נראה שמלח במרכז הבקע נלחץ והתחיל להתרומם בשוליו דרך מישורי החולשה עלפיכך נראה וטו השכבות ממצבן האופקי המקורי למצבן האנכי הנוכחי (Gardosh, et al., 1997). 1997).

עדויות גאולוגיות שונות בהר סדום נותנות אומדן לקצב ההתרוממות בשלבים השונים של התפתחות ההר. החלוקה לשלבים נובעת מעדויות וסיבות שונות כאשר לכל שלב קצב התרוממות משוער האופייני לאותו שלב (סיכום אצל Weinberger, et al., 2006a):

- 2.2 מליון שנה תחילת עלייתו של מחדר המלח. העדויות מתקופה זו נשענות על פענוח חתכים סייסמיים ממספר אזורים בבקע ים המלח. עדות זאת מלמדת כי כל השכבות אשר הורבדו לאחר 2.2 מליון שנה, הורבדו בעת שמחדר המלח התרומם, ומציאותו ותנועתו השפיעו על אופן הרבדתן. לכן גיל התחלת ההתרוממות מאוחר לגיל השכבות הללו, אשר השפיעו על אופן הרבדתן. לכן גיל התחלת ההתרוממות מאוחר לגיל השכבות הללו, אשר תוארכו על ידי קורלציה פלינולוגית ל-2.2 מיליון שנה (Horowitz, 1989). בהנחה שהתארוך מדויק מספיק, קצב ההתרוממות שנגזר מנתונים אלו הוא 3~ מ"מ בשנה. קצב זה נמוך ביחס לשאר העדויות, דבר אשר יכל לנבוע כתוצאה מהעובי היחסית קטן של עמודת הסלע שהייתה בבקע בתקופה זו המהווה גורם מניע עיקרי לתנועת המלח.
- בין 300,000 ל-150,000 שנה מחדר המלח מגיע מהעומק אל קרבת פני השטח, תחילת 2.
 בין סלע החיפוי (ראה סעיף 1.2 לעיל, היווצרות "ראי המלח" וסלע החיפוי). סלע חיפוי הצטברות סלע החיפוי (ראה סעיף 1.2 לעיל, מיווצרות "ראי המלח" וסלע החיפוי). סלע חיפוי בעובי של 1.2 מטר, מעיד בעובי של עד 50 מטר, שנותר לאחר המסה של תצורת סדום בעובי של 500-800 מטר, מעיד על קצב המסה של 3-8 מ"מ בשנה.

המלח היתה במרכז ההר ולא בשוליו. קצב ההתרוממות שנגזר מנתונים אלו הוא 5~ מ"מ בשנה.

- 4. בין 70,000 ל-70,000 שנה מחדר המלח נחשף לראשונה בפני השטח. בנחל פרצים, 4. בין 70,000 ל-70,000 עד-14,000 עד 14,000 עד 14,000 עד מערבית להר סדום, רצף השכבות החשופות של תצורת הלשון הינו מגיל 43,000 עד 43,000 שנים. שנים. הגיל הקדום ביותר של תצורת הלשון על גבי הר סדום עצמו הינו 43,000 שנים. המחסור בשכבות הלשון מגיל 70,000 עד 43,000 עד המחסור בחלק המחסור בשכבות הלשון מגיל 70,000 עד 43,000 עד מאותה התקופה הר סדום לא היה מכוסה במי האגם והוא בצבץ כאי מעל פני האגם. שלב זה אינו מעיד על קצב התרוממות.
- 5. בין 40,000 ל-14,000 שנה התרוממות והטיה של הר סדום. ב"גבעה הלבנה" (איור 1C), 18 מטר מעל לבסיסה של תצורת הלשון ישנה אי התאמה זוויתית. גיל האי התאמה הוא כ-18 מטר מעל לבסיסה של תצורת הלשון ישנה אי התאמה זוויתית. גיל האי התאמה הוא כ-31,000 שנה, ומכך ניתן להסיק כי במהלך תקופה זו ההר התרומם בעיקר בסמוך למרכזו 31,000 שנה, ומכך ניתן להסיק כי במהלך תקופה זו ההר התרומם בעיקר בסמוך למרכזו יותר מאשר בשוליו המזרחיים, מה שהוביל להטיית תצורת הלשון מזרחה. קצב ההתרוממות שנגזר מנתונים אלו הוא 5~ מ"מ בשנה.
- 6. לאחר 14,000 שנה המשך התרוממות של הר סדום. זה הוא השלב הצעיר ביותר והוא 6. משופע בעדויות להמשך עליתו של ההר. עדויות אלו מגיעות מהטיות בשכבות הצעירות ביותר ששופע בעדויות להמשך עליתו של ההר. עדויות אלו מגיעות מהטיות בשכבות הצעירות בהר של תצורת הלשון (פרומקין, 1992) וגיל המערות בהר של תצורת הלשון (פרומקין, 1992) וגיל המערות בהר סדום (Frumkin, 1996a). עדויות אלו מצביעות על קצב התרוממות של 5-11 מ"מ בשנה.

בהתבסס על עדויות גאולוגיות אלו, קצב ההתרוממות של מחדר המלח בתקופת ההולוקן נאמד בין 3-11 מ"מ בשנה (Frumkin, 1996a; Weinberger, et al., 2006a ; Frumkin, et al., 2001). בעשור האחרון, טכנולוגיה חדישה אפשרה מדידה מדוייקת יותר של קצב התרוממות הר סדום באמצעות שיטות מדידה ישירות (מדידות מכ"ם מלווין (InSAR) ומדידות גאודטיות). רמת הדיוק של המדידות מאפשרת להעריך את קצב ההתרוממות של הר סדום בימינו (פרומקין, 1992). על של המדידות אלו, קצב ההתרוממות של הר סדום בימינו (פרומקין, 1992). על פי מדידות אלו, קצב ההתרוממות של ההר הוא 5-9 מ"מ בשנה (Baer, et al., 2002; Pe'eri, et al., 2004; Weinberger, et al., 2006b; המדידות הישירות, קצרות הטווח, לבין האומדנים הגאולוגיים טובה מאוד (Baer, et al., 2002; Pe'eri, et al., 2004; Weinberger, et al., 2006b; המדידות הישירות, קצרות הטווח, לבין האומדנים הגאולוגיים טובה מאוד (Frumkin, 1996a). התוצאות מצביעות על כך שקצב התנועה האנכי בהר סדום הינו המהיר ביותר מכל גושי הסלע האחרים באזורינו. קצבי תנועה מהירים אלו מלווים בהתמוטטויות בשולי ההר ונפילות גושי סלע לאורכו ולרוחבו (Frumkin, 2009).

1.5 דיאפירי מלח בעולם

דיאפירים הינם מחדרים של חומר דוקטילי מתוך החתך הסדימנטרי או המגמתי החודרים אל תוך הסדימנטרי או המגמתי החודרים אל תוך (Talbot, 1993) הסדימנט או הסלע שמעליו

קילומטרים, ולרוב הם מופיעים בצברים (Chapman, 1973). הרכב המחדר מגוון ועשוי לכלול סלעים אבפוריטים (לרוב מלח או גבס), חרסיות, חול או סלעים מגמתיים. מחדרי מלח שפרצו אל פני השטח ויצרו גבעות המתנשאות מעל סביבתן מוכרים בתוניסיה ובאיראן; המשותף לאזורים אלו הוא אקלים יבש. מסיסותו של המלח במים היא כה גבוהה (מילימטר גשם יכול להמיס שכבת מלח שעוביה כ-0.2 מילימטרים), עד שמים מטאוריים ממיסים את שכבות המלח המתרוממות ומונעים היווצרות כיפת מלח בפני השטח. אם המלח נדחף מעלה בקצב נמוך מקצב ההמסה של המים המטאוריים, הוא לא ייצור גבעה בפני השטח וזוהי הסיבה למיעוטן של כיפות מלח ברחבי העולם. אך באיראן קצב ההתרוממות של מחדרי המלח יכול להגיע ל-82 מילימטר ויותר בשנה (Talbot & Jarvis, 1984). היובש השורר באזור, ביחד עם כמות הגשמים המעטה (אך הגדולה יותר מבאזור הר סדום – 45~ מילימטר גשם בשנה לעומת 220~ באיראו). הוא שמאפשר למחדרים שם להתרומם במהירות גבוהה ולשרוד מעל פני השטח. מצד שני, המים משמשים כחומר סיכה המקטין את החיכוך: קצב ההתרוממות גדל עד שהם יוצרים "מזרקות מלח", שבהן סלע המלח השופע "נשפך" לצדי הגבעה במשך אלפי שנים. "שפכי" המלח, נעים בתנועה הדומה לקרחון העשוי מלח, ומגיע למרחק של קילומטרים אחדים ממנה (Talbot & Aftabi, 2004; Talbot & Pohiola, 2009). קצב ההתרוממות של מחדר סדום הוא בסדר גודל קטן יותר מקצבי ההתרוממות של המחדרים המהירים שדווחו באיראן. גופי מלח שתוארו פזיוגרפית באיראן מכוסים לרוב סלעי חיפוי, ומחשופים של מלח מאסיבי מופיעים בארובות עמוקות, במחשופים טריים או ב"קרחוני מלח" הזורמים במורד הכיפות הגבוהות יותר. הרקע הגאולוגי להתפתחותן של חלק מהצורות המתוארות בגופי המלח באיראן דומה בקוים רבים לזה של הר סדום (זק, 1967). בנוסף לגופי המלח המוזכרים כאן, יש מספר רב של גופי מלח שלא פרצו אל פני השטח: ארה"ב (Avery Island), גרמניה, מפרץ מקסיקו, איטליה ועוד.

2. מטרת המחקר

טקטוניקת מלח נחקרה רבות, אך פחות ידועים התנועה היחסית בין יחידות המלח השונות בתוך גופי מלח בכלל, ואופי הדפורמציה בין יחידות המלח השונות בהר סדום בפרט. יחידות המלח קטומות בראשן על ידי "ראי המלח", שהתאבן בתקופה ידועה (בין 11,000-14,000 שנים לפני ההווה. ראה סעיף 1.2 לעיל, היווצרות "ראי המלח" וסלע החיפוי) ולאחר מכן עבר עיוותים והסטות מהווה. ראה סעיף 1.2 לעיל, היווצרות "ראי המלח" וסלע החיפוי) ולאחר מכן עבר עיוותים והסטות ההווה. ראה סעיף 1.2 לעיל, היווצרות "ראי המלח" וסלע החיפוי) ולאחר מכן עבר עיוותים והסטות מקב תנועה מאוחרת של יחידות המלח. לפיכך ניתן להשתמש ב"ראי המלח" כדי לאפיין את תהליכי הדפורמציה השונות הבונות את הר סדום. מסטרה העיקרית של המחרת של המחקר הינה הבנת תהליכי הדפורמציה החולוקניים בחלקו הדרומי של הר המטרה העיקרית של המחקר הינה הבנת תהליכי הדפורמציה ההולוקניים בחלקו הדרומי של הר המטרה (איור 1C). הגדרת הגאומטריה של "ראי המלח" תראה האם המחדר מתרומם כסדרה של

יחידות עצמאיות העוברות החלקה בינן לבין שכנותיהן, בדומה לאנטנה טלסקופית, או כגוף יחיד המוטה על צידו (איור 5). המטרה הושגה על ידי מיפוי סטרוקטורלי של "ראי המלח" במרחב הדרומי של הר סדום, וניתוח של המפה שתתקבל בעזרת נתונים הידועים ממחקרים קודמים (זק, 1967; פרומקין, 1992; Weinberger, et al., 2006b).

איור סכמטי המדגים שני מקרי קצה למבנה מחדר המלח של הר סדום: אנטנה טלסקופית (משמאל) או גוף יחיד (מימין). הקווים האדומים מציינים את מיקום מישור "ראי המלח" כאשר מעליו יושב סלע החיפוי.

שלוש שאלות מנחות את הניתוח הסטרוקטורלי של "ראי המלח":

- האם מבנה "ראי המלח" דומה בצורתו לטופוגרפיה של הר סדום? מענה לשאלה זו יסייע בהבנת תהליכי הדפורמציה בהר, והוא יושג תוך השוואה בין הגבהים של "ראי המלח" לבין הגבהים המתאימים בפני השטח באזורים שונים ברחבי ההר הדרומי. כלומר, בהנחה שתהליכי ההשקעה והארוזיה באזור ארידי כדוגמת הר סדום נמוכים, האם ניתן לומר שהטופוגרפיה מסמלת את מבנה המחדר היושב תחתיו?
- 2. האם "ראי המלח" נטוי או מורכב ממדרגות אופקיות המוסטות זו ביחס לזו על ידי העתקים? תשובה לשאלה זו תאפשר להבין טוב יותר את פיזור הדפורמציה בעת התמקמות המחדר בתקופת ההולוקן.
- 3. מהו קצב העלייה הממוצע של ההר במשך תקופת ההולוקן? האם יש שוני בין קצבי העליה בשולי ההר למרכזו? בין ההר הדרומי להר הצפוני? (בהתבסס על השוואה לנקודות מפתח של "ראי המלח" בהר הצפוני) על בסיס הנתונים ממחקר זה ניתן יהיה לקבוע את כמות ההסטה, קצבי ההתרוממות וגרדיינט העתקה באזורי מפתח בהר.

בעתיד, המפה הסטרוקטורלית של "ראי המלח" תשמש כבסיס נתונים להבנה ולבניית מודלים מכניים של תהליכי הדפורמציה במחדרי מלח. מודלים אלו יעזרו לפתור בעיות בהבנת אופי התרוממות ההר המעיד על קצבי התרוממות שונים לאורכו ולרוחבו.

3. חומרים ושיטות

3.1 עבודת שדה

עבודת השדה כללה מיפוי ומדידת גבהים של "ראי המלח" והעתקים שמסיטים אותו במחשופים ובמערות, בדיוק של עד 50 סנטימטרים. כחומר רקע נעשה שימוש ב-DTM ארצי (נקודות שריג של 25 מטרים) וב-DEM ייעודי (נתוני ליידר מוטס מגיחת 2013, איור 6), במפה הגאולוגית מתוך זק (1967) ובמפת פתחי המערות מתוך פרומקין (1992, איור 7) ששימשה כמורה דרך למציאת ארובות ומערות בהם נחשף "ראי המלח". "ראי המלח" מופה בשני שלבים עיקריים: שלב א' כלל מיפוי היקפי של "ראי המלח" במחשופים של דרום הר סדום בעזרת מספר כלים:

- דיפרנציאלי GPS <u>:Global Positioning System RTK (Real Time Kinematic)</u> -
- המאפשר מדידת נקודות ציון בדיוק של עד 3 סנטימטרים במישור האופקי ועד 15 סנטימטרים במישור האנכי.
- <u>Electronic Distance Meter</u>): מכשיר המודד כיוונים ומרחקים (total station, EDM) Electronic Distance Meter) אופקיים ואנכיים ברמת דיוק של סנטימטר אחד. כאשר מזינים אליו את נקודות הציון המתקבלות מה- GPS, ניתן לירות קרן לייזר ממנו לנקודה על פני "ראי המלח" ולמדוד את מיקומה המרחבי בקואורדינטות Z,Y,X.

-איור **7:** מפת המערות ופתחיהן (אחרי פרומקין, 1992) בהר הדרומי. אדום- מערות ידועות ב-1992. כחול מערות שהתגלו מאז ועד היום.

שלב ב' כלל מיפוי של "ראי המלח" באזור הפנימי יותר של ההר במחשופים, במערות ובארובות. הנקודות נאספו באמצעות ה-GPS-RTK ובעזרת כלים נוספים:

- <u>- מד טווח לייזר:</u>
- 10 מכשיר המודד מרחקים עד 300 מטר בדיוק של עד 10
 06 מטר בדיוק של עד 10
 סנטימטרים.
- <u>Leica DISTO X310</u> מכשיר המודד מרחקים עד 100 מטר בדיוק של 1 מילימטר.
 שני המכשירים מודדים גם את זווית ההגבהה/הנמכה מהאופק. עיבוד נתוני המכשירים מוד המכשירים גם את זווית ההגבהה/הנמכה מהאופק. עיבוד נתוני המכשירים שני המכשירים גם את המיקום והגובה של "ראי המלח" בדיוק רב מנקודת הציון של פתח המערה (GPS-RTK).
 - <u>ציוד גלישה וטיפוס.</u>
 - <u>מצפן + מד שיפוע- "ברנטון".</u>

הנתונים שנאספו משלב ב' צורפו לשכבת "ראי המלח" באופן פחות רציף מהנקודות אשר הופקו משלב א', עקב המצאות נקודות המדידה בתת הקרקע ובמחשופים קטנים בלב שטח המיפוי. שכבת "ראי המלח" חושב על ידי אינטרפולציה של כלל הנקודות שנמדדו (ראה סעיף 3.2). תהליך האינטרפולציה התחשב במבנה ההר ובהעתקים הממופים. העתקים שמופו עד מחקר זה בעיקר על ידי זק (1967) מוצגים במפות בעבודה זו (איור 2).

3.2 עיבוד נתונים

הנתונים הידועים עד מחקר זה, ברובם מזק (1967) ופרומקין (1992) כמו גם ממאגר הנתונים של המכון הגאולוגי, עובדו לכדי יצירת מפה סטרוקטורלית באמצעות תוכנת ArcGIS - מערכת מידע גאוגרפית (ממ"ג/GIS). על מפה זו נבנתה שכבה של "ראי המלח" עם מערכת ההעתקים שמסיטה אותה. התחשבתי בהעתקים בשני אופנים: הראשון- בשדה, במידת האפשר נמדדה ההסטה משני צידיו של ההעתק המסיט את "ראי המלח". השני- ב-GIS, נבדקה התאמה בין ההסטה משני צידיו של ההעתק המסיט את "ראי המלח". השני- ב-GIS, נבדקה התאמה בין העתקים שסומנו מהנתונים הקודמים למחקר זה לבין אזורים בעלי תבליט משמעותי בנתוני העתקים שסומנו מהנתונים הקודמים למחקר זה לבין אזורים בעלי תבליט משמעותי בנתוני העתקים שסומנו מהנתונים הקודמים למחקר זה לבין אזורים בעלי תבליט משמעותי בנתוני העתקים שסומנו מהנתונים הקודמים למחקר זה לבין אזורים בעלי תבליט משמעותי בנתוני העתקים שסומנו מהנתונים הקודמים למחקר זה לבין אזורים בעלי תבליט משמעותי בנתוני

השתמשנו במספר שיטות אינטרפולציה בכדי ליצור את שכבת "ראי המלח" מתוך הנתונים שנמדדו במהלך העבודה:

- שיטת אינטרפולציה "Natural Neighbor". שיטה זו מדגימה בצורה הטובה ביותר את -תופעת ההתרוממות, שכן היא מחליקה את האזורים הנמצאים בין נקודות בהן יש נתונים,
 - 17

כדי ליצור שכבה ללא העתקים או מבנים אי-רגולריים (מבנים קטנים ומקומיים השונים מהמבנה הכללי של אותו אזור). ההחלקה בתוך האזור המדוד הינה בעזרת חיפוש נתונים אשר ערכם דומה או שווה והחלקת השטחים ה"מתים" אשר נמצאים ביניהם. לכן, שיטה זו של אינטרפולציה מתאימה להדגשת אופי ההתרוממות בכלל חלקו הדרומי של הר סדום. בעקבות חוסר ההתחשבות במבנים אי-רגולריים שיטה זו רק עוזרת להמחיש את האופי הכללי של התרוממות באזור העבודה ולא מייצגת לאמיתה את מבנה "ראי המלח".

באזורים המכילים הרבה נקודות מדידה ישנו צורך להשתמש בשיטת אינטרפולציה אחרת,
 בשם "IDW) Inverse Distance Weighted" (עדי המלח", במידת האפשר, כפי שהיא קיימת במציאות. שיטה זו מבוססת על אינטרפולציה המלח", במידת האפשר, כפי שהיא קיימת במציאות. שיטה זו מבוססת על אינטרפולציה לאזורים בהם אין נקודות מדידה, בעזרת חישוב לינארי הנעזר במספר נקודות מדידה (אשר מגדיר המשתמש) בטווח מסויים מאזור האינטרפולציה (שגם אותו מגדיר המשתמש). שיטה מגדיר המשתמש). שיטה זו מתאימה יותר לאזור שבו מספר הנתונים גבוה ביותר כיוון שהוא יתן את האינטרפולציה זו מתאימה יותר לאזור שבו מספר הנתונים גבוה ביותר כיוון שהוא יתן את האינטרפולציה הקרובה ביותר לאזור שבו מספר הנתונים גבוה ביותר כיוון שהוא יתן את האינטרפולציה הקרובה ביותר למציאות, ללא החלקה בין נקודת מדידה אחת לחברתה. עוד מאפיין חשוב לשיטת האנטרפולציה "IDW"

אינטרפולציות אלו יוצרות את שכבת "ראי המלח". שכבה זו מעובדת במפה עם כל הנתונים שנאספו ומעידה על תהליכי דפורמציה ב"ראי המלח" בפרט ועל הר סדום ככלל. בכדי להציג את מפת הקונטורים של שכבת "ראי המלח", הועברו שכבות האנטרפולציה לתוכנת "GoldenSoftware-Surfer" ושם עובדו למפה זו.

3.3 ניתוח מבנים

לאחר עיבוד המידע ויצירת מפות ב-GIS, שכבות הטופוגרפיה ו"ראי המלח" נבחנו כדי לענות על השאלה הבאה: האם המבנה של "ראי המלח" דומה למבנה פני השטח של הר סדום? הגבהים של נקודות מדידה על "ראי המלח" (Zm) מוצגים מול הגבהים הטופוגרפיים של היטלי נקודות אלו על המפה הטופוגרפית (Zt). בדיאגרמת קורלציה של הגבהים נבדקה מידת ההתאמה הליניארית שיש בין פני שטח ההר לבין המבנה של "ראי המלח". התאמה ליניארית טובה תעיד על התאמה מבנית טובה בין השניים. בתחילה, נבדקה ההתאמה על ידי שימוש בנתוני DTM עם גודל שריג של 25 מטרים שנבנו בעזרת נתונים מגו'ן הול. עם הגעת נתוני הליידר המוטס בקיץ 2013, עודכנו נתוני הטופוגרפיה למידע זה (איור 6).

3.4 חישוב קצב התרוממות

כמות ההעתקה בין חלקיו השונים של משטח "ראי המלח" משמשת מדד לקצב התרוממות הר סדום עקב ההנחה כי מישור זה "התאבן" תוך זמן יחסית קצר, לפני כ-14,000 שנה. מישור זה עבר לאחר מכן דפורמציה עקב קצב התרוממות לא אחיד בתוך ובין היחידות השונות הבונות את הר סדום. כמות ההעתקה, הנמדדת בין האזור הנמוך ביותר לגבוה ביותר במשטח "ראי המלח", מסמלת את המרחק המזערי שהמשטח התרומם מזמן התאבנותו. מכאן שהחסרת הגובה המזערי בו נמדד "ראי המלח" מגובהו המירבי, תיתן את הגובה (המרחק) המזערי שההר התרומם מזמן התאבנותו. חלוקה של הגובה (המרחק) בזמן תייצג את הקצב המזערי של עליית הר סדום.

displacement (תנועת החלקה אנכית לאורך מישורי השיכוב הינה ביטוי לגרדיינט העתקה (displacement (gradient) על שכבות המלח. גרדיינט העתקה מחושב באופן הבא (איור 8):

(displacement gradient)
$$\gamma = \frac{h}{l}$$

. מרחק אופקי בכיוון מזרח-מערבl

. הפרשי הגבהים בין הנקודות -h

כיוון ש"ראי המלח" משמש כסמן סטרוקטורלי בעל גיל ידוע, ניתן לחשב את גרדיינט מהירות העתקה באופן הבא:

בהר סדום.

(displacement gradient rate) $\dot{e} = \frac{\gamma}{t}$

-*t* זמן העתקה = 4.41e¹¹[sec]=14,000X365X24X60X60 = הזמן בשניות שעבר מאז התאבנות "ראי המלח". חישוב גרדיינט מהירות העתקה בהר סדום מאפשר השוואה לגרדיינט מהירות העתקה של מחדרי מלח אחרים ומהווה ערך בר השוואה לגרדיינט מהירות של מגוון תופעות גאולוגיות אחרות.

4. תוצאות

4.1 מבנה "ראי המלח"

נמדדו 550 נקודות ב"ראי המלח" והן מוצגות בנספח 1 וטבלה 1. נקודות מדידה אלו (נספח 1) שימשו ליצירת שתי מפות אינטרפולציה. המפה הראשונה, באיור 9, חושבה בשיטת האינטרפולציה "Natural Neighbor" (ראה סעיף 3.2 לעיל, עיבוד נתונים). המפה השניה, באיור 10A, חושבה בשיטת האינטרפולציה "IDW" והיא מדמה, במידת האפשר, את שכבת "ראי המלח" במציאות. היסטוגרמה של כמות המדידות בכל גובה מחזקת את האנטרפולציה בגבהים שונים (איור 10B). שכבת "ראי המלח" מופיעה בשיאה סמוך לגבול המערבי של הר סדום בסמוך להעתק הכרבולת המערבי (איורים 9, 10, 11 ו-12), הוא העתק הגבול המערבי של הר סדום (סטרייק צפון-דרום). אזורי העתקים ו\או גבול בין פרטים שונים של תצורת סדום, מאופיינים בשיפוע תלול של "ראי המלח" (איור 9, האזורים בצבע ירוק עד כתום, והאזור שצמוד להעתק הכרבולת המערבי ממערב). החתכים ומפת ה-"IDW", מראים ריבוי מדרגות העולות בתבליט חריף לכיוון מערב (איור 10A, אזור מלח"ם וכל האזור המזרחי; איור 12, באזור של שנים עד שלושת ההעתקים המזרחיים ובאזור העתק הכרבולת המערבי. שחזור ראי המלח באיור 12, במקומות שהנתונים מעטים, מתבסס על ההנחה שראי המלח מתנהג בהם בדומה למקומות מרובי הנתונים. כלומר "ראי המלח" כמעט אופקי בין ההעתקים). לעומת זאת, בתוך תחומי פרט לוט ופרט מלח ופצלי הכרבולת (איור 2, מרכז ההר הדרומי; איור 9, האזורים בצבע חום עד ורוד) שיפוע "ראי המלח" מתון יותר בתחומי רוחב כל פרט. בחתכים ובמפת ה-"IDW", באיורים 9 ו-11, תופעה זו מתבטאת במדרגות גדולות ורחבות (באזור של שנים עד שלושת ההעתקים במרכז ההר ועד העתק הכרבולת המערבי). בהסתכלות מוכללת על ההר הדרומי, התבליט של "ראי המלח" חריף במיוחד בחלקו המזרחי עד כ-400 מטרים מערבה מהשוליים המזרחיים של ההר. מאזור זה מערבה התבליט של "ראי המלח" מתמתן, הדרוג ב"ראי המלח" נהיה פחות חריף, עד ההגעה להעתק הגובל ממערב, הוא העתק הכרבולת המערבי (איורים 10C,10A, 11 ו-12).

הקו "Natural Neighbor". הקו איור **9:** מפה סטרוקטורלית של "ראי המלח" שעובדה בשיטת האינטרפולציה "Natural Neighbor". הקו השחור העבה מייצג את מיקום העתק הכרבולת המערבי הגובל ממערב את עיקר אזור האינטרפולציה ואת שטח ההר בפועל. אזור מערת מלח"ם מסומן באדום. סרגל הצבעים במפה מיצגים טווח גבהים מתחת לפני הים (למשל: 385- - 360-) במטרים.

איור 11: מפת מיקום חתכים לרוחב דרום הר סדום. העתקים המסומנים בירוק מופו ע"י זק (1967).

איור 11: חתכים החוצים את הר סדום מזרח-מערב בעלי הגזמה אנכית של 1:5 (איור 11), "ראי המלח" ABSL= Altitude . (חץ אדום). פוערבה עולה בדרוג מערבה עד העתק הכרבולת המערבי הגובל את ההר ממערב (חץ אדום). Below Sea Level Below Sea Level. הטופוגרפיה בחתכים מנתוני ליידר. העתקים המסומנים בכתום מופו ע"י זק (1967). והעתקים המסומנים בירוק ומופו בעבודה הנוכחית (ב"ראי המלח", Faults SM). ראי המלח" נמדד בצפיפות רבה יותר באזור מערת מלח"ם, בו ישנם מחשופים רבים. באזור זה" ראי המלח" מועתק ומאופיין בנטייה קלה מזרחה או שאינו נטוי כלל (מישור תת-אופקי, איור 13).

איור 13: תמונה של "ראי המלח" מעל מערת מלח"ם, ערוץ צפוני, במבט מצפון. המישור התת-אופקי של ראי המלח" (אדום) מופר על ידי העתק (צהוב) עם זריקה של 10~ מטרים.

איור 14 מציג מפת אינטרפולציה מסוג "Inverse Distance Weighted (IDW)" באזור מערת מלח"ם אשר מציגה את מבנה "ראי המלח" לאחר התחשבות במבנים אי-רגולריים (ראה סעיף 3.2 לעיל, עיבוד נתונים). איור 15 מציג את מיקום חתכי הרוחב באזור מערת מלח"ם, ואילו חתכים 'D-D ו-'E-E המוצגים באיורים 15 ו-16 ביחד עם המפה (איור 14), מראים, הן לפי הטופוגרפיה והן לפי "ראי המלח", כי מדובר באזור המחולק לשלוש מדרגות העולות ממזרח למערב. נראה ש"ראי לפי "ראי המלח", כי מדובר באזור המחולק לשלוש מדרגות העולות ממזרח למערב. נראה ש"ראי המלח" בכל מדרגה מייצג מישור תת-אופקי, שמופר קרוב להעתקים הגובלים אותו משני צידיו (איורים 16 ו-17). לפיכך, בין כל שתי מדרגות ישנו העתק החלקה תוך/בין שכבתי המבדיל בין יחידת מלח אחת למשניה. ההעתק המערבי בחתכים אלו מופה לראשונה על ידי זק (1967) ואילו שאר ההעתקים מופו לראשונה בעבודת השדה הנוכחית. העתקים אלו מעתיקים את "ראי המלח"

באזור מערת IDW" איור **14:** מפה סטרוקטורלית של "ראי המלח" שעובדה בשיטת האינטרפולציה שו מלח"ם. סרגל הצבעים מייצג טווח של גבהים במטרים.

איור **15:** מפת מיקום חתכים באזור מערת מלח"ם. ההעתק המערבי שחוצה את האזור מופה ע"י זק, 1967.

איור **16:** חתך 'D-D (איור 15) בעל הגזמה אנכית של 1:2.5, העובר דרך אזור מערת מלח"ם ומציג את D-D (איור 1:2.5) פני השטח (בכחול) ואת "ראי המלח" (באדום) בשיטת "IDW". העתקים המסומנים בכתום מופו ע"י זק פני השטח (בכחול) והעתקים המסומנים בירוק מופו בעבודה הנוכחית (ב"ראי המלח", Faults SM).

איור 17: חתך 'E-E (איור 15) בעל הגזמה אנכית של 1:2.5, העובר דרך אזור מערת מלח"ם ומציג את (די זק E-E) פני השטח (בכחול) ואת "ראי המלח" (באדום) בשיטת "IDW". העתקים המסומנים בכתום מופו ע"י זק (faults SM) והעתקים המסומנים בירוק ומופו בעבודה הנוכחית (ב"ראי המלח", 1967).

4.2 השוואה בין "ראי המלח" לטופוגרפיה של הר סדום

חתך 'B-B העובר דרך הר סדום הדרומי (איור 12) מדגים איך פני השטח של ההר בנויים כצורת פעמון א-סימטרי אשר עולה חריפות ממזרח למערב, מגיע לשיא גובהו כמה מאות מטרים ממערב למרכז של ההר, ולאחר מכן ממשיך את צורת הפעמון בירידה לכיוון מערב. הפעמון אינו מושלם בצורתו, הן בגובה בסיסו המזרחי לעומת גובה בסיסו המערבי והן בגלל אי-הסימטריה של הקימור. מערבה משיא גובה ההר מתחילה ירידה מתונה כלפי מערב עד להעתק שגובל את ההר הקימור. מערבה משיא גובה ההר מתחילה ירידה מתונה כלפי מערב עד להעתק שגובל את ההר ואמערב, העתק הכרבולת המערבי. ההעתק, המתבטא בתבליט ברור בנוף, מופה ע"י זק (1967), ואומת בתת הקרקע במחקר זה, מבדיל בין הר סדום המורם לבין מישור עמיעז השוכן למרגלותיו, הפרש של כ-70 מטרים.

לצורך השוואה בין מבנה "ראי המלח" לבין פני השטח הוצבו זה כנגד זה נתוני הגבהים של "ראי המלח" ושל רום ההר (ראה סעיף 3.3 לעיל, ניתוח מבנים). איור 18 מציג השוואה ראשונית עם נתונים טופוגרפיים המבוססים על DTM עם נקודות שריג של 25 מטרים (ידוע כ-"DTM של גו'ן הול") אל מול כמות מועטה של מערות. השוואה ראשונית זו מראה התאמה ליניארית לא טובה בין הטופוגרפיה הלא מדויקת לנקודות המדידה הראשוניות.

איור 18: הקשר בין גובה "ראי המלח" לטופוגרפיה של הר סדום לפי כלל הנקודות שנמדדו בתחילת המחקר (N=368). הטופוגרפיה מבוססת על ה-"DTM של גו'ן הול" ונקודות מדידה של "ראי המלח" בעיקר משולי הר סדום. Zt- גובה טופוגרפי של פני השטח. Zm- גובה "ראי המלח". הגבהים נתונים במטרים מתחת לגובה פני הים. באיור המציג את כלל הנקודות שנאספו במהלך כל המחקר (איור 19), בהשוואה של "ראי המלח" מול נתונים טופוגרפיים מדויקים של הליידר, נראית התאמה ליניארית טובה בין הגאומטריה של "ראי המלח" לבין הטופוגרפיה של הר סדום. התאמה זו מתבטאת ב- R²=0.93 ושיפוע- 1.06 של כלל הנקודות שנמדדו במהלך המחקר מאזור ההר הדרומי.

-Zt .(N=521) איור **19:** הקשר בין גובה "ראי המלח" לטופוגרפיה של הר סדום לפי כלל הנקודות שנמדדו (N=521). גובה יות **19:** גובה טופוגרפי של פני השטח. Zm- גובה "ראי המלח". הגבהים נתונים במטרים מתחת לגובה פני הים.

לצורך ניתוח מדוקדק יותר, נבחנו באותה שיטה, בנפרד, מספר אזורים ברחבי ההר (איור 20; מערת מלח"ם, מרכז ההר ומערבה ודרום ההר) כדי ללמוד על המבנים בכל אזור כפרט ולהשליכו על הכלל.

איור 20: מפת מיקום האזורים לצורך השוואה מדוקדקת בין מבנה "ראי המלח" לבין פני השטח.

איור 21 מציג את כל הנקודות שנמדדו באזור מערת מלח"ם, המהוות שליש מכלל הנקודות שנמדדו בהר הדרומי, שנמדדו בהר הדרומי. ניתן לראות התאמה ליניארית דומה להתאמה שנמצאה לכלל ההר הדרומי, המתבטאת ב- 1.93 R²=0.93 ושיפוע- 0.99.

איור **21:** הקשר בין גובה פני השטח לגובה "ראי המלח" (במטרים מתחת לפני הים) באזור מערת מלח"ם **איור 21:** הקשר בין גובה פני השטח. Zm- גובה (N) איור 20). מספר הנקודות מעל אזור מלח"ם (N) = 7k. ובה טופוגרפי של פני השטח. 2m- גובה (צייור 20). מספר הנקודות מעל אזור מלח" (איור מלח" (איו מלח" (איור מלח

השוואה באזור הדרומי מראה אף היא התאמה מסויימת, אשר מעידה על מגמה חיובית בהתאמה בין המבנים (איור 22, גרף עליון). לעומת זאת, בגרף של הנקודות במרכז ההר ומערבה, ההתאמה הליניארית פחות טובה (איור 22, גרף תחתון) המתבטא ב-20.34 R²=0.34 ושיפוע-0.28. גרף זה מייצג רק 15 נקודות מכלל הנקודות שנמדדו. מאחר ובאזורים אלה מספר המחשופים מוגבל, נראה שנקודות המדידה המעטות מקבלות משקל רב יחסית בעיבוד הנתונים.

איור 22: הקשר בין גובה פני השטח לגובה "ראי המלח" (במטרים מתחת לפני הים) באזור הדרומי (איור עליון) והמרכזי - מערבי של הר סדום הדרומי (איור תחתון) עם 75 ו-15 נקודות מדידה (N) בהתאמה. מיקום האזורים מצוין באיור 20. ZH- גובה טופוגרפי של פני השטח. Zm- גובה "ראי המלח".

4.3 השוואת קצבי עלייה בהר הדרומי לנקודות מפתח בהר הצפוני

בהר הצפוני נמדד "ראי המלח" ב-29 נקודות מדידה (איור 23 וטבלה 1) בארבע תחנות שונות מסביב להר הצפוני (שתיים ממזרח ושתיים ממערב). הנקודות של "ראי המלח" נאספו באופן רציף בכל תחנה, באותה השיטה בה נאספו הנתונים בחלקו המזרחי של ההר הדרומי (ראה סעיף 3.1 לעיל, עבודת שדה, שלב א'), ומאפשרות בחינה של נתח גדול מההר הצפוני. מדידות אלו אינן מייצגות את כל המקומות והמחשופים בהם ניתן למדוד את "ראי המלח" בהר הצפוני והן משמשות רק כמדגם מייצג ממרחבי ההר הצפוני.

FID	Name	Grid North	Grid East	Elevation	Source
0	398	559964.762	236711.572	-354.099	EDM
1	399	559936.969	236718.001	-354.367	EDM
2	400	559900.219	236756.882	-355.665	EDM
3	401	559879.731	236772.822	-356.671	EDM
4	402	559852.449	236778.52	-358.899	EDM
5	403	559350.07	236858.237	-355.445	EDM
6	404	559253.977	236861.405	-355.969	EDM
7	405	559183.767	236883.605	-363.848	EDM
8	406	559123.004	236893.7	-357.102	EDM
9	407	559088.979	236906.69	-357.207	EDM
10	408	559047.316	236915.977	-357.732	EDM
11	409	559023.072	236917.84	-354.571	EDM
12	410	558997.332	236936.502	-365.625	EDM
13	411	558896.934	236995.717	-369.73	EDM
14	412	558850.268	237030.973	-371.71	EDM
15	413	558724.034	235697.571	-316.705	EDM
16	414	558738.745	235702.201	-317.411	EDM
17	415	558751.73	235705.34	-318.568	EDM
18	416	558678.348	235869.983	-253.49	EDM
19	417	558706.674	235873.157	-254.425	EDM
20	418	558787.035	235861.86	-254.942	EDM
21	419	558864.277	235865.75	-259.306	EDM
22	420	558903.622	235923.417	-251.142	EDM
23	421	558903.3	235870.52	-264.216	EDM
24	422	560105.619	235753.315	-321.945	EDM
25	423	560147.663	235740.528	-320.045	EDM
26	424	560186.795	235738.842	-320.917	EDM
27	425	560205.305	235722.696	-323.753	EDM
28	426	560230.808	235711.67	-325.622	EDM
29	398	559964.762	236711.572	-354.099	EDM
30	399	559936.969	236718.001	-354.367	EDM

טבלה 1: נתוני 29 נקודות המדידה מההר הצפוני.

איור 23: מיקום כלל הנקודות שנמדדו במחקר זה, בהר הצפוני (אדום) ובדרומי (סגול).

כפי שהוסבר בסעיף 3.4, קצב עליית ההר מחושב בעזרת הפרשי הגבהים שבין הגובה המזערי לבין המירבי של מישור "ראי המלח". בהר הדרומי, הפרש הגבהים בין המזערי (386-) למירבי (-226) הוא 160±0.5 מטרים. הפרש זה חלקי הזמן שעבר מתקופת התאבנותו של "ראי המלח" (-226) שנה) נותן את קצב העלייה המזערי של כלל ההר הדרומי. מכאן, שקצב עליית ההר (-371) שנה) נותן את קצב העלייה המזערי של כלל ההר הדרומי. מכאן, שקצב עליית ההר הדרומי הוא לפחות 11±0.03 מטרים בשנה. בהר הצפוני הפרשי הגבהים בין המזערי (371-) הדרומי הוא לפחות 11±0.03 מטרים. לפי גילי C¹⁴ של עצים במערות, תוארכה חשיפת המלח למירבי (251-) הוא 10±0.5 מטרים. לפי גילי C¹⁴ של עצים במערות, תוארכה חשיפת המלח ותחילת התרוממות ההר הצפוני לכ-3000 שנים מאוחר יותר להר הדרומי (Frumkin, 1996b; מילימטרים בשנה.

בנוסף, "ראי המלח" משמש כמדד לגרדיינט העתקה ולחישוב גרדיינט מהירות העתקה (ראה סעיף 3.4 לעיל, חישוב קצב התרוממות) שפעלו על שכבות המלח. גרדיינט העתקה וגרדיינט מהירות העתקה חושבו במספר סקאלות ברחבי ההר הדרומי: המדידות מכלל ההר הדרומי, מהירות לאורך חתך 'E-E (איור 15) והמדידות באזור המחצבה (איור 1, Quarry). התוצאות מוצגות בטבלה 2:

	Distance E-W	displacement	displacement
	[m]	gradient	gradient rate [1/sec]
Southern Sedom Mountain	1652	0.09±0.001	2.2E-13±3.5E-15
Malcham Zone E'-E	250	0.36±0.002	8.3E-13±6.2E-15
Sedom Quarry	174	0.34±0.004	8E-13±9.3E-15

טבלה 2: תוצאות חישוב גרדיינט העתקה וגרדיינט מהירות העתקה.

האזורים בעלי כמות גדולה של נתונים (Quarry-i E'-E) ו-Quarry) ושנמדדו במרחקים האופקיים הקטנים יותר (250 ו-174 מטרים, בהתאמה) מראים גרדיינט מהירות העתקה ממוצע להולוקן של-174 = 1250 (לאורך של עד 250 מטרים). לעומת זאת במדידות של כלל ההר גרדיינט המהירות $8e^{-13} \left[\frac{1}{sec}\right]$ (לאורך של עד 250 מטרים). לעומת זאת במדידות של כלל ההר גרדיינט המהירות נמוך יותר (טבלה 2). נתונים אלו מצביעים על כך שבשוליים המזרחיים של מחדר המלח גרדיינט מהירות העתקה גבוה יותר מאשר במרכזו. כלומר, אזורים אלה שבשולי ההר עברו העתקה ודפורמציה אינטנסיביים יחסית.

5. דיון

5.1 הדפורמציה של "ראי המלח" ומשמעויותיה

ראי המלח" משמש בעבודה הנוכחית כסמן סטרוקטורלי, ואופי הדפורמציה שלו מדגים את אופי" ההתרוממות של הר סדום בהולוקן. ניתוח הנתונים מראה כי "ראי המלח" בנוי כמדרגות העולות ממזרח לכיוון מערב (איורים 10C,10A, 12, 14, 16 ו-17, ראה סעיף 4.1 לעיל, מבנה "ראי המלח"). המעבר בין המדרגות מתרחש באזור המגע בין יחידה ליתולוגית אחת לרעותה או לאורך העתקים קטנים הנוצרים בתוך היחידות הליתולוגיות כתוצאה מתנועת ההר והיחידות כלפי מעלה. איור 10 וחתכים 'B-B ו-B-B (איור 12), החוצים את הר סדום הדרומי, מדגימים כי חלקו המורם של "ראי המלח" מוגבל ממזרח בהעתק גבול החדירה המזרחי של ההר (Frumkin, 2009). ככל שמתקדמים מערבה ישנה עליה הדרגתית של החתך המלווה בהעתקים עד שמגיעים למדרגה הגבוהה ביותר אשר מוגבלת ממערב על ידי העתק הכרבולת המערבי (איור 10B). חתך 'E-E (איור 17), העובר מעל אזור מערת מלח"ם, מאפשר התמקדות וניתוח מדויק יותר של החלק המזרחי ביותר שמתואר בחתך 'B-B. אזור זה מייצג בחלקו המזרחי תבליט תלול, ובחלקו המערבי תבליט שמתרומם במתינות. האזור בנוי מדרגות קטנות אשר מופרדות על ידי העתקים קטנים עליהם מחליקות תתי יחידות המלח. "ראי המלח" שבור למדרגות אופקיות העולות בהדרגה מערבה, המוסטות זו ביחס לזו על ידי העתקים. רוחב חלקן גדול (<400 מטרים) וחלקן צרות (<40 מטרים). ממזרח וממערב, הר סדום הדרומי מוגבל בהעתקי חדירה ראשיים המגביהים אותו מפני השטח הסובב (זק, 1967).

עקב מחסור במחשופים ובמערות ממערב להעתק הכרבולת המערבי, לא ניתן כמעט למדוד את "ראי המלח" באזור זה. עם זאת, המחקרים של זק (1967) ושל פרומקין (1992) הראו כי ממערב להעתק הכרבולת המערבי ישנן עדויות לתנועה זרימה והתרוממות של עוד בלוק מלח אחד לפחות הנמצא בתת הקרקע ממערב לגבול הטופוגרפי של הר סדום כיום. עדויות לבלוק הנדון, נמצאו במחקר הנוכחי בחלקו הדרומי של ההר הדרומי, בנקודה בודדת, במערת תופים (איור 7). "ראי המלח" במערת תופים נמדד בגובה 317- מטרים מתחת לפני הים. כלומר, זריקה של 80 מטרים המלח" במערת תופים נמדד בגובה 317- מטרים מתחת לפני הים. כלומר, זריקה של 80 מטרים הצידו המזרחי של העתק הכרבולת המערבי לצידו המזרחי הירוד. אין בכך די לתאר היטב את הגאומטריה של מישור "ראי המלח" ממערב להעתק הכרבולת המערבי. אולם נראה שמערבית הגאומטריה של מישור "ראי המלח" ממערב להעתק הכרבולת המערבי. אולם נראה שמערבית להעתק הכרבולת המערבי, כחלק מעליית מחדר המלח, ישנו בלוק נמוך יותר של יחידות מלח אשר עושה את דרכו מעלה (איור 24). בלוק זה ניכר היטב גם לפי המורפולוגיה של פני השטח הנראית בצילומי אוויר.

איור 2**2:** איור סכמתי המדגים את אופן עליית המחדר בעזרת הנתונים ממחקר זה וידע ממחקרים קודמים **1962:** איור סכמתי 1967; פרומקין, 1992). חץ אדום – העתק הכרבולת המערבי.

לאור הנתונים ממחקר זה בצירוף הידע ממחקרים קודמים (Weinberger et al., 2006b), ניתן לדמות את עליית הר סדום כתוצר זרימה למינרית של מלח דרך תעלה; מהירות המלח ("הזרם") עולה לכיוון מרכז התעלה ויורדת ככל שמתקרבים לצדדיו, שם המלח הזורם מעוכב על ידי החיכוך. עקב כך גרדיינט ההעתקה גבוה יותר באזור שולי ההר. המערכת של הר סדום איננה סימטרית בחתך הרוחב, עקב השתפלותו של בקע ים המלח ממזרח, מה שמפעיל על הר סדום גרדיינט העתקה אנכי נוסף. צורת המלח ממזרח, מיור מיזרח מעוכב על יחיכום גרדיינט בחתך הרוחב, עקב משמעות של מחדר סיום המלח ממזרח, מה שמפעיל על הר סדום גרדיינט העתקה אנכי נוסף. צורת הפעמון הא-סימטרי (איור 24) מעידה שהשתפלות הבקע משפיעה באופן משמעותי על עליית הבקע משפיעה העתקה אנכי נוסף. צורת הפעמון הא-סימטרי המלח מחדר סדום.

5.2 האם מבנה "ראי המלח" דומה לטופוגרפיה של הר סדום?

נבדקה ההשערה כי הטופוגרפיה של הר סדום מרמזת על מבנה גוף המלח אשר נמצא תחתיו בעומק. בחלק מהאזורים בהר ניתן למצוא דמיון בין הטופוגרפיה למבנה "ראי המלח", אך בחלקים אחרים לא נמצא דמיון כזה; התבליט החזק המאפיין את פני השטח במזרח ההר הדרומי תואם את התבליט החזק שנמדד במבנה "ראי המלח" מתחתיו. כמו כן, התרוממות "ראי המלח" באופן מתון מערבה תואמת, בצורה כללית, את עליית פני השטח כלפי מערב בצורה מתונה עד לשיא גובהו של הר סדום הדרומי. משיא הגובה ועד הגבול המערבי (העתק הכרבולת המערבי) השיפועים הפוכים אחד ביחס לשני: בעוד "ראי המלח" ממשיך לעלות בצורה מתונה כלפי מערב או שהוא נשאר בקירוב באותו הגובה, פני השטח יורדים בצורה מתונה עד הגבול של ההר ממערב, העתק הכרבולת המערבי (איור 12).

כאשר מטילים את נתוני המדידות של גובה "ראי המלח" מול האנטרפולציה של הרום הטופוגרפי על מנת לבחון את ההתאמה הליניארית בין שני המשטחים ניתן לראות כי באזורים בהם ישנם נתונים רבים (בעקבות ריבוי מחשופים ומערות) ההתאמה הליניארית טובה מאוד. באזורים בעלי מיעוט בנתונים התאמה זו יורדת בצורה משמעותית (איורים 21 ו-22). משיא גובה ההר ועד העתק הכרבולת המערבי כמות הנתונים מועטה והמחשופים קטנים ומייצגים אזורים נקודתיים. מיעוט הנתונים אינו מאפשר מסקנות מוחלטות לגבי אופי התרוממותו של האזור. הגרפים מאששים את ההשערה כי הטופוגרפיה מרמזת על מבנה "ראי המלח" בעומק. מסקנה זו ברורה על רקע נתוני הליידר המדויקים אך מטושטשת על ידי נתונים טופוגרפים שהתקבלו מה-"DTM של גו'ן הול" אשר אינם מדמים את פני השטח ברמת הדיוק המתאימה למחקר זה.

5.3 קצב עליית הר סדום במשך תקופת ההולוקן

5.3.1 קצבי עלייה בהר סדום הדרומי

הבדלי גבהים בין מדרגות "ראי המלח" משמשים מדד לכמות ההעתקה ובכך מעידים על קצב העלייה ש"ראי המלח" עבר מזמן התאבנותו. באזור המזרחי של ההר הדרומי, צפונית לאזור מערת מלח"ם (איור 9), גובה "ראי המלח" בין 386- ל-290- מטרים מתחת לפני הים (הפרשי הגובה של "ראי המלח" איתם מדדו את קצב העלייה במחקרים קודמים; Weinberger, et al., הגובה של "ראי המלח" ל-226- ל-226 2006a; טבלה 3). עם זאת, גובה "ראי המלח" במרחבי כל ההר הדרומי נע בין 386- ל-226 מטרים מתחת לפני הים. מכאן שקצב עליית ההר הדרומי הוא לפחות-11 מילימטרים בשנה במהלך 14,000 השנים האחרונות (ראה סעיף 4.3 לעיל, השוואת קצבי עליה).

גרדיינט העתקה שהתקבל מהמדידות שכוללת את כלל מרחבי ההר הדרומי לאורך של 1652 מטרים הינו- 0.09. גרדיינט העתקה זה בסדר גודל קטן יותר מגרדיינט העתקה שחושב במחקרים קודמים באזור המזרחי של הר סדום ל-0.4 (Zak & Freund, 1980). גרדיינט העתקה ממחקרים אלו דומה בקירוב טוב לתוצאות שקיבלנו באזור המזרחי של הר סדום שם נאספו נתונים רבים (ראה סעיף 4.3 לעיל, נספח 1).

גרדיינט מהירות העתקה הנמדד על "ראי המלח" בכלל הר סדום הדרומי במשך 14,000 השנים האחרונות הינו- $\left[\frac{1}{sec}\right]^{2.2e^{-13}}$ (לאורך 1652 מטרים). באזור המזרחי של הר סדום הדרומי גרדיינט מהירות העתקה הינו- $\left[\frac{1}{sec}\right]^{2}^{-13} = 8e^{-3}$ (לאורך 250 מטרים). במחקר המבוסס על מודלים של גרדיינט מהירות העתקה עם נתוני ה-InSAR שנמדדו באזור המזרחי של הר סדום הדרומי, התקבל ארדיינט מהירות העתקה עם נתוני ה-InSAR שנמדדו באזור המזרחי של הר סדום הדרומי, התקבל גרדיינט מהירות העתקה קטן יותר של- $\left[\frac{1}{sec}\right]^{2}^{-13}$ (לשורך 2006) השנים ממחקר, פר מדומי, התקבל המחקר טענו כי מהירות התרוממות מחדר מלח יורדת עם הזמן. נתונים ממחקר ה- InSAR מייצגים רק את תקופת הזמן שלאחר 14,000 השנים האחרונות ולכן תוצאות אלו אכן מאששות כי קצב התרוממות ההר יורד עם הזמן.

כפי שהוזכר למעלה, עובי עמודת סלע החיפוי מעיד על כמות השארית הבלתי מסיסה שהצטברה מעל יחידות המלח (ראה סעיף 1.4 לעיל, מבנה הר סדום, שלבים בהתרוממותו וקצבי עליה). שארית זו מסמלת כ-5%~ מכלל עמודת סלע המלח המקורי (Zak & Freund, 1980). על פי נתונים אלו חושב בעבר קצב עליית הר סדום. מנתוני המחקר הנוכחי מתקבל כי עובי עמודת סלע החיפוי משתנה בצורה חריפה בין אזורים שונים בהר וכי האזור בו הצטברה עמודת סלע חיפוי העבה ביותר אינו בהכרח האזור בו התרחשה התרוממות ההר בקצב המהיר ביותר (איור 12, חתך B-C). איור 25 מציג שתי היפותזות לאופן עליית המחדר והצטברות סלע החיפוי.

איור 25: חתכי רוחב סכמתיים המדגימים שתי היפותזות לאופי עליית המחדר (גוף אחיד עם דרוג עולה למערב- טור ימני, ומודל האנטנה- טור שמאלי) ביחס לפני השטח ב- 3 מצבים שונים: כל שורה באיור מייצגת מצב שונה של עובי סלע החיפוי: עובי אחיד, עובי משתנה (האזור העבה יותר נמצא מעל יחידת המלח שהתרוממה בקצב הגבוה ביותר והאזור עם עמודת סלע החיפוי הדקה ביותר מעל לאזורים שהתרוממו פחות) וצורת הפעמון הא-סימטרי של פני השטח בדומה למציאות. יחידות המלח (בשחור) שהתרוממו פחות) וצורת הפעמון הא-סימטרי של פני השטח בדומה למציאות. יחידות המלח ביחס לטופוגרפית הר סדום (בכחול). העמודה הימנית מסמלת קצב עליה הדרגתי של יחידות המלח המתגבר לכיוון מערב. העמודה השמאלית מסמלת קצב עליה גבוה במרכז ההר שהולך ומאט ככל שמתרחקים מהמרכז כפי שמוצע ב"מודל טלסקופי" של עליית המחדר.

לפי הנחת 'עובי משתנה' (איור 25) עובי עמודת סלע החיפוי הגדול ביותר ימצא מעל האזור הגבוה ביותר של יחידות המלח כתוצאה מקצב העלייה הגבוה ביותר אשר יגביר את כמות החומר שעבר המסה והושקע מחדש כסלע חיפוי. נתוני מחקר זה מראים שהאזור בעל סלע החיפוי העבה ביותר אינו מעל האזור בו יחידות המלח התרוממו במהירות הגבוהה ביותר (יחידות המלח הגבוהות ביותר, איור 25 בעמודה ימנית ציור תחתון). תהליכי ארוזיה ואירועים סטרוקטורליים למיניהם, למשל קריסות קרקע, וגם שינויים בתכולת קשי התמס בפרטים של תצורת סדום (קיימים הבדלים משמעותיים, בין שכבות ובין הפרטים) הינם גורמים משפיעים על עובי עמודת סלע החיפוי. גורמים אלו גורמים לחוסר דיוק במדידת עובי עמודת הסלע ואף להסתייגות לגבי האפשרות ללמוד על קצב עליית המחדר מנתון זה. חשוב לציין כי על אף הסתייגות זו, הקצב המתקבל מחישובים אלו עדיין מתאים לקצב ההתרוממות הכללי שחושב בעזרת מאפיינים אחרים.

חשוב לזכור כי אף על פי שדרוג עולה לכיוון מערב (העמודה הימנית באיור 25) מייצג באופן הנאמן ביותר למציאות את הנתונים שעובדו במחקר זה, האיור אינו מייצג את אופי עליתו האמיתי של המחדר למלוא רוחבו, מכיוון שהאיור אינו כולל את הבלוק המערבי שתחת לפני השטח של מישור עמיעז (ראה סעיף 5.1 לעיל, הדפורמציה של "ראי המלח" ומשמעויותיה, איור 24). הכללת הבלוק המערבי מלמדת על שילוב בין ההיפותזה של 'דרוג עולה לכיוון מערב' לבין 'אנטנה טלסקופית'.

5.3.2 קצבי עלייה בהר סדום הצפוני

מדידת מישור "ראי המלח" באזור ההר הצפוני נערכה למטרת השוואה כללית בין קצב עליית שני חלקיו העיקרים של ההר. הנתונים מההר הצפוני נמדדו רק במחשופים הניתנים לתצפית ולמדידה בעזרת EDM מבסיס ההר, ואינם מיצגים איסוף נתונים מדוקדק ויסודי כפי שהתבצע בהר הדרומי (איור 23). עם זאת, נתונים אלו מייצגים שטח גדול בשולי ההר הצפוני ועל כן יכולים לייצג בקירוב עוב קצב מזערי של התרוממות ההר הצפוני. גובה "ראי המלח" במרחבי ההר הצפוני נמדד בין טוב קצב מזערי של התרוממות ההר הצפוני. גובה "ראי המלח" במרחבי ההר הצפוני נמדד בין עוב קצב מזערי של התרוממות ההר הצפוני. גובה "ראי המלח" במרחבי ההר הצפוני נמדד בין 11 מילימטרים בשנה במהלך תקופת ההולוקן (ראה סעיף 4.3 לעיל, השוואת קצבי עליה). 13 מחקרים קודמים אשר מדדו את הקצב המזערי של עליית ההר הצפוני (2002;) מחקרים קודמים אשר מדדו את הקצב המזערי של עליית ההר הצפוני (2002;) מחקרים קודמים אשר מדדו את הקצב המזערי של עליית ההר הצפוני (כוחקרים אלו מחקרים קודמים לימטרים בשנה (מחקרים ליקצב התרוממות מזערי של עליית ההר הדרומי השוו בין קצב התרוממות מזערי של ההר הצפוני לקצב התרוממות מזערי של עליית ההר הדרומי השוו בין קצב התרוממות מזערי של ההר הצפוני לקצב התרוממות מזערי של עליית ההר הדרומי השוו בין קצב התרוממות מזערי של ההר הצפוני למדד ל-5 מילימטרים בשנה. מחקרים אלו ההר הצפוני גבוה יותר משאר האומדנים שחושבו בעבר. מציאות זו אינה תואמת את הטענה כי ההר הצפוני אכן מתרומם מהר יותר מההר הדרומי (ראה סעיף 5.3.1 לעיל, קצבי עלייה בהר סדום הדרומי) אלא מראה כי קצבי התרוממות כלליים במרחבי ההר כולו דומים.

קצב התרוממות משוער [mm/yr]	שינוי גובה [m]	טווח הזמן [yr]	עדות/סיבה גאולוגית	שלב
3	6100 עד	2,200,000	סה"כ עליית המחדר (Weinberger, et al., 2006a)	1
3-8	600-800	300,000- 100,000	היווצרות של סלע חיפוי (Zak & Freund, 1980)	2
5-7	80	11,000- 14,000	העתקת "ראי המלח" (Zak & Freund, 1980)	3
5	75	14,000	שכבות סחף מעל תצורת הלשון (זק, 1967)	4
6-7	46	8,000	התחתרות והיווצרות מערות בהר סדום (Frumkin, 1996a)	5
11	35	3,100	מפלסים קדומים של ים המלח (Frumkin, et al., 2001)	6
5-7	0.035 (בהר הדרומי)	7.5	InSAR (Weinberger, et al., 2006a)	7
11-14	160 (בהר הדרומי)	11,000- 14,000	העתקת "ראי המלח" ממחקר זה	8

טבלה 3: טבלת קצבי התרוממות ההר מ- Weinberger, et al., 2006a, כולל מחקר זה.

6. מסקנות

בעבודה זו נחקרה צורתו של "ראי המלח" ואופי עלייתו של הר סדום הדרומי בעזרת מיפוי "ראי המלח" בדיוק רב. מחשופים, קטנים וגדולים, מופו בעזרת מספר כלי מדידה מדוייקים ונתוניהם הועברו לתוכנת מערכת מידע גאוגרפית ליצירת שכבה המדמה בצורה הטובה ביותר את מבנה "ראי המלח". ממחקר זה ניתן ללמוד על אופי התרוממותו של הר סדום ואף להשליך לגבי אופי התרוממותם של מחדרים שונים מרחבי העולם. עיקר המסקנות ממחקר זה הן:

- בעזרת המבנה של הסמן הסטרוקטורלי ("ראי המלח") ניתן לדעת כי במשך תקופת ההולוקן הר סדום הדרומי התרומם בצורה הדומה למודל של "אנטנה טלסקופית". ה'אנטנה' הינה א-סימטרית, עקב גרדיינט העתקה הפועל על שולי ההר כתוצאה מהשתפלות בקע ים המלח הנוגד בכיוונו את ההתרוממותו של הר סדום. ניתן לדמות את עליית ההר לחומר הזורם בתעלה אשר נוסף לו כוח חיכוך המשנה את הסימטריות של הזרימה.
- פני שטח הר סדום הדרומי מרמזים בצורה טובה על מבנה "ראי המלח" בעומק ההר. דמיון
 זה מתואר כפעמון א-סימטרי, בפני השטח, היושב מעל מבנה אנטנה טלסקופית בתת הקרקע שאף הוא אינו סימטרי.
- עובי עמודת סלע החיפוי אינו מעיד על מהירויות התרוממות שונות של אזורים שונים בהר.
 סלע החיפוי מושפע מתופעות סביבתיות וגאולוגיות שונות (ריכוז קשי התמס בשכבות תצורת סלע החיפוי מושפע מתופעות סביבתיות וגאולוגיות שונות (ריכוז קשי התמס בשכבות נעורת סלע החיפוי. לכן, לא ניתן סדום, קריסות קרקע, בלייה ועוד) אשר מפרות את עוביו וצורתו של סלע החיפוי. לכן, לא ניתן להסיק לגבי מהירויות עלייה שונות באזורים שונים בהר רק על סמך עובי עמודת סלע החיפוי.
- קצב עליית הר סדום הדרומי במשך תקופת ההולוקן, המחושב במחקר זה, הינו לפחות 11 מילימטרים בשנה. בנוסף, קצב ההתרוממות המזערית של ההר הצפוני דומה לקצב המזערי של היר הדרומי. קצבים אלו נמצאים בתחום העליון ביותר של הערכות קודמות לקצב של ההר הדרומי. קצבים אלו נמצאים בתחום העליון ביותר של הערכות קודמות לקצב המתרוממות. גרדיינט מהירות העתקה בכלל ההר הדרומי חושב ל- [1/(sec) 2.2e^{-13} (לאורך ההתרוממות. גרדיינט מהירות של ההר הדרומי לי (לאורך 100 מטרים). לאורך 1052 מטרים).

7. ביבליוגרפיה

- ברטוב, י. (1999). הגיאולוגיה של תצורת הלשון במישור מצדה וחצי האי ליסאן. [עבודת מוסמך] האוניברסיטה העברית בירושלים, 115 ע'.
- זק, י. (1967). הגאולוגיה של הר סדום. [עבודת דוקטור] האוניברסיטה העברית בירושלים, 208 ע'.
 - פרומקין, ע. (1992). מערכת הקרסט במחדר המלח של הר סדום. [עבודת דוקטור] האוניברסיטה העברית בירושלים, 210 ע'.
 - שליב, ג. (1991). שלבים בהתפתחות בטקטונית והוולקנית של האגן הנאוגני בגליל התחתון שליב, ג. (1991). ובעמקים. [עבודת דוקטור] האוניברסיטה העברית בירושלים, 112 ע'.
- Agnon, A., Migowski, C., & Marco, S. (2006a). Intraclast breccias in laminated sequences reviewed: Recorders of paleo-earthquakes. In Y. Enzel, A. Agnon, & M. Stein, New frontiers in Dead Sea paleoenvironmental research (pp. 195-214). Geological Society of America Special Paper 401. doi:10.1130/2006.2401(13)
- Agnon, A., Weinberger, R., Zak, I., & Sneh, A. (2006b). Geological Map of Israel, Sheet 20-I Sedom, scale 1:50,000. Israel Geological Survey
- Al-Zoubi, A., & ten Brink, U. (2001). Salt diapirs in the Dead Sea Basin and their relationship to Quaternary extensional tectonics. *Marine and Petroleum Geology*, 18, 779-797. doi:10.1016/S0264-8175(01)00031-9
- Baer, G., Schattner, U., Wachs, D., Sandwell, D., Wdowinski, S., & Frydman, S. (2002). The lowest place on Earth is subsiding-An InSAR (interferometric synthetic aperture radar) perspective. Geological Society of America Bulletin, 114, 12-23. doi:10.1130/0016-7606(2002)114<0012:TLPOEI>2.0.CO;2
- Bartov, Y., Agnon, A., Enzel, Y., & Stein, M. (2006). Late Quaternary faulting and subsidence in the central Dead Sea basin. *Israel Journal of Earth Sciences*, 55, 17-31.
- Bartov, Y., Stein, M., Enzel, Y., Agnon, A., & Reches, Z. (2002). Lake-levels and sequence stratigraphy of Lake Lisan, the Late Pleistocene precursor. *Quaternary Research*, 57, 9-21. doi:10.1006/qres.2001.2284.

- Belmaker, R., Lazar, B., Beer, J., Christl, M., Tepelyakov, N., & Stein, M. (2013). 10Be dating of Neogene halite. *Geochimica et Cosmochimica Acta*, 122, 418-429.
- Ben-Avraham, Z. (1997). Geophysical framework of the Dead Sea: Structure and tectonics. In T. m. Niemi, J. R. Gat, & Z. Ben-Avraham, *The Dead Sea, the lake and its setting* (pp. 22-35). Oxford: Oxford University Press.
- Bruthans, J., Smid, J., Filippi, M., & Zeman, O. (2000). Thickness of cap rock and other important factors affecting morphogenesis of salt karst. *Acta Carsologica*, 29, 51-64.
- Carter, N. L., Hansen, F. D., & Senseny, P. E. (1982). Stress magnitudes in natural rock salt. *Journal of Geophysical Research*, 9289-9300.
- Carter, N. L., Horseman, S. T., Russell, J. E., & Handin, J. (1993). Rheology of rock salt. Journal of Structural Geology, 15, 1257-1271. doi:10.1016/0191-8141(93)90168-A
- Farkas, L., Litman, H. L., & Bloch, M. R. (1951). The formation of "salt tables" in natural and artificial solar pans. Research Council of Israel Bulletin, 1, 36-39.
- Freund, R., Garfunkel, Z., Zak, I., Goldberg, M., Weissbrod, T., & Derin, B. (1970). The shear along the Dead Sea rift. Philosophical Transactions of the Royal Society of london A, 267, 107-130. doi:10.1098/rsta.1970.0027
- Frumkin, A. (1996a). Uplift rate relative to base-levels of a salt diapir (Dead Sea Basin, Israel) as indicated by cave levels. In G. I. Alsop, D. J. Blundell, & I. Davidson, *Salt Tectonics, Geological Society of London SP* (Vol. 100, pp. 41-47). doi:10.1144/GSL.SP.1996.100.01.04
- Frumkin, A. (1996b). Determining the exposure age of a karst landscape. *Quaternary Research, 46*, pp. 99-106. doi:10.1006/qres.1996.0050
- Frumkin, A. (2009). Formation and dating of a salt pillar in Mount Sedom diapir, Israel. *Geological Society of America Bulletin*, 121, 286-293. doi:10.1130/B26376.1
- Frumkin, A., Magaritz, M., Carmi, I., & Zak, I. (1991). The Holocene climatic record of the salt caves of Mount Sedom Israel. *The Holocene*, 1, 191-200. doi:10.1177/095968369100100301
- Frumkin, A., Kadan, G., Enzel, Y., & Eyal, Y. (2001). Radiocarbon chronology of the Holocene Dead Sea: Attempting a regional correlation. *Radiocarbon*, 43, 1179-1189.

- Gardosh, M., Kashai, E., Salhov, S., Shulman, H., & Tannenbaum, E. (1997). Hydrocarbon exploration in the southern Dead Sea area. In T. M. Niemi, Z. Ben-Avraham, & J. R. Gat, *The Dead Sea: the lake and its setting* (pp. 57-72). Oxford: Oxford University Press.
- Garfunkel, Z., & Ben-Avraham, Z. (1996). The structure of the Dead Sea basin. *Tectonophysics*, 266, 155-176. doi:10.1016/S0040-1951(96)00188-6
- Horowitz, A. (1989). Palynological evidence for the Quaternary rates of accumulation along the Dead Sea Rift, and structural implications. Tectonophysics, 164, 63-71. doi:10.1016/0040-1951(89)90234-5
- Hudec, M. R., & Jackson, M. P. (2007). Terra infirma: Understanding salt tectonics. Earth-Science Reviews, 82, 1-28.
- Joffe, S., & Garfunkel, Z. (1987). Plate kinematics of the circum Red Sea—a re-evaluation. *Tectonophysics*, 141, 5-22.
- Kashai, E. L., & Croker, P. F. (1987). Structural geometry and evolution of the Dead Sea-Jordan rift system as deduced from new subsurface data. *Tectonophysics*, 141, 33-60.
- Lisker, S., Vaks, A., Bar-Matthews, M., Porat, R., Frumkin, A., (2009). Stromatolites in caves of the Dead Sea Fault Escarpment: implications to latest Pleistocene lake levels and tectonic subsidence. Quaternary Science Reviews, 28, 1-2, 80-92.
- Neev, D., & Hall, J. K. (1979). Geophysical investigations in the Dead Sea. *Sedimentary Geology*, 23, 209-238.
- Pe'eri, S., Zebker, H. A., Ben-Avraham, Z., Frumkin, A., & Hall, J. K. (2004). Spatiallyresolved uplift rate of the Mount Sedom (Dead Sea) salt diapir from InSAR observations. *Israel Journal of Earth Sciences*, 53, 99-106. doi:10.1560/7B8G-6VFK-1GNH-QGF8
- Picard, L. (1950). Geologic report of Jordan Exploration Company Concession, Dead Sea, Israel. In L. Franklin, *Oil prospects of the Jordan Exploration Company Concession at the south end of the Dead Sea, Israel* (Vol. 1, p. 48). Houston Texas.
- Quennell, A. M. (1959). Tectonics of the Dead Sea Rift. 20th International Geological Congress, (pp. 385-405). Mexico.

- Sagy, A., Reches, Z., & Agnon, A. (2003). Hierarchic three-dimensional structure and slip partitioning in the western Dead Sea pull-apart. Tectonics, 22, 1004. doi:10.1029/2001TC001323
- Stein, M. (2001). The sedimentary and geochemical record of Neogene-Quaternary water bodies in the Dead Sea Basin – inferences for the regional paleoclimatic history. *Journal of Paleolimnology*, 26, 271-282.
- Talbot, C. J., & Aftabi, P. (2004). Geology and models of salt extrusion at Qum Kuh, central Iran. *Journal of the Geological Society*, *161*, 321-334.
- Talbot, C. J., & Jarvis, R. J. (1984). Age, budget and dynamics of anactive salt extrusion in Iran. *Journal of Structural Geology*, 6(5), 521-533. doi:10.1016/0191-8141(84)90062-2
- Talbot, C. J., & Pohjola, V. (2009). Subaerial salt extrusions in Iran as analogues of ice sheets, streams and glaciers. *Earth-Science Reviews*, 97, 155-183.
- Vroman, J. (1951). The Movement and Solution of Salt Bodies as Applied to Mount Sdom. *Israel Exploration Journal*, 1, 185-193.
- Weinberger, R., Agnon, A., & Ron, H. (1997). Paleomagnetic reconstruction of a diapir emplacement: A case study from Sedom diapir, the Dead Sea Rift. *Journal of Geophysical Research*, 102, 5173-5192. doi:10.1029/96JB02287
- Weinberger, R., Bar-Matthews, M., Levi, T., & Begin, Z. B. (2007). Late-Pleistocene rise of the Sedom diapir on the backdrop of water-level fluctuations of Lake Lisan, Dead Sea basin. *Quaternary International*, 175, pp. 53-61.
- Weinberger, R., Begin, Z. B., Waldmann, N., Gardosh, M., Baer, G., Frumkin, A., &
 Wdowinski, S. (2006a). Quaternary rise of the Sedom Diapir, Dead Sea Basin. (Y.
 Enzel, A. Agnon, & M. Stein, Eds.) New Frontiers in Dead Sea
 Paleoenvironmental Research, 401, 33-51. doi:10.1130/2006.2401(03)
- Weinberger, R., Lyakhovsky, V., Baer, G., & Begin, Z. B. (2006b). Mechanical modeling and InSAR measurements of Mount Sedom uplift, Dead Sea basin: Implications for effective viscosity of rock salt. *Geochemistry Geophysics and Geosystems*, 7. doi:10.1029/2005GC001185

- Yechieli, Y., Magaritz, M., Levy, Y., Weber, U., Kafri, U., Woelfli, W., & Bonani, G. (1993). Late Quaternary Geological History of the Dead Sea Area, Israel. *Quaternary Research*, 39, pp. 59-67. doi:10.1006/qres.1993.1007
- Zak, I., & Bentor, Y. K. (1972). Some new data on the salt deposits of the Dead Sea area, Israel. *Geology of Saline Deposits*. 7, pp. 137-146. Paris: UNESCO.
- Zak, I., & Freund, R. (1980). Strain measurements in eastern marginal shear zone of Mount Sedom salt diapir, Israel. *AAPG Bulletin*, 64, pp. 568-581.
- Zak, I., & Freund, R. (1981). Asymmetry and basin migration in the dead sea rift. *Tectonophysics*, 80, 27-38.

8. נספח

דות המדידה בהר הדרומי.	נספח 1: נתוני 521 נקו
------------------------	------------------------------

FID	Name	Grid North	Grid East	Elevation	Source
0	P1	550834.684	235925.402	-345.575	GPS-RTK
1	P2	550831.856	235936.191	-346.026	GPS-RTK
2	Р3	550875.272	235958.271	-348.006	GPS-RTK
3	P3AUTO	550875.36	235958.502	-347.61	GPS-RTK
4	P4	551214.223	235835.276	-332.159	GPS-RTK
5	P4AUTO	551214.21	235835.273	-331.923	GPS-RTK
6	P5	551214.225	235835.284	-332.278	GPS-RTK
7	P6	551175.612	235812.049	-327.475	GPS-RTK
8	P7	551212.215	235833.8	-329.716	GPS-RTK
9	P8	551608.994	235835.203	-336.087	GPS-RTK
10	Р9	551473.431	235838.375	-332.523	GPS-RTK
11	P10	551447.91	235840.941	-331.273	GPS-RTK
12	P11	551355.617	235826.079	-329.947	GPS-RTK
13	P12	551375.819	235826.891	-330.436	GPS-RTK
14	P13	550818.542	235986.056	-349.429	GPS-RTK
15	P14	550821.131	235996.098	-349.538	GPS-RTK
16	P15	550817.994	236005.888	-352.333	GPS-RTK
17	P16	550819.034	236012.856	-352.577	GPS-RTK
18	P17	550818.005	236020.646	-353.811	GPS-RTK
19	P18	550817.911	236032.268	-356.041	GPS-RTK
20	P19	550820.815	236045.613	-357.477	GPS-RTK
21	P20	550826.628	236065.76	-359.515	GPS-RTK
22	P21	550844.209	236065.635	-357.55	GPS-RTK
23	P22	550848.829	236046.809	-357.51	GPS-RTK
24	P23	550850.819	236037.426	-354.403	GPS-RTK
25	P24	550886.864	236051.695	-344.393	GPS-RTK
26	P25	550888.093	236074.603	-344.564	GPS-RTK
27	P26	550888.716	236080.213	-345.142	GPS-RTK
28	P27	550945.343	236075.501	-330.742	GPS-RTK
29	P28	550928.039	236082.529	-338.631	GPS-RTK
30	P29	550932.221	236092.543	-338.511	GPS-RTK
31	P30	550929.939	236103.625	-338.378	GPS-RTK
32	P31	550935.056	236092.585	-335.419	GPS-RTK
33	P32	550911.44	236123.546	-346.691	GPS-RTK
34	P33	550964.65	236121.612	-334.713	GPS-RTK
35	P34	550988.742	236113.632	-335.691	GPS-RTK
36	P35	550978.4	236141.733	-334.349	GPS-RTK
37	P36	550979.612	236153.904	-335.187	GPS-RTK
38	P37	551251.983	236464.523	-351.096	GPS-RTK

39	P39	554215.213	237655.576	-293.032	GPS-RTK
40	P40	554208.632	237661.767	-294.665	GPS-RTK
41	P41	554270.76	237711.496	-315.452	GPS-RTK
42	P42	554273.743	237736.495	-319.475	GPS-RTK
43	P43	554272.32	237652.145	-295.933	GPS-RTK
44	P44	554279.562	237651.031	-296.395	GPS-RTK
45	P45	554221.825	237694.853	-317.401	GPS-RTK
46	964	551315.747	236507.94	-345.708	EDM
47	965	551318.956	236510.378	-346.184	EDM
48	966	551320.854	236513.88	-346.092	EDM
49	967	551323.363	236516.172	-346.127	EDM
50	968	551324.273	236516.47	-346.165	EDM
51	969	551132.518	236311.999	-345.376	EDM
52	970	551212.249	236411.893	-347.646	EDM
53	971	551215.483	236412.857	-348.813	EDM
54	972	551320.565	236513.087	-348.278	EDM
55	973	551491.312	236627.72	-349.548	EDM
56	974	551492.753	236630.189	-349.985	EDM
57	975	551590.97	236752.99	-366.411	EDM
58	976	551594.108	236759.802	-365.884	EDM
59	977	551616.053	236798.207	-360.555	EDM
60	978	551613.539	236795.152	-360.47	EDM
61	979	551694.568	236872.135	-356.511	EDM
62	980	551700.186	236875.077	-355.911	EDM
63	981	551705.344	236879.356	-356.253	EDM
64	982	551722.734	236902.658	-359.531	EDM
65	983	551725.397	236904.127	-359.463	EDM
66	984	551739.845	236913.853	-357.784	EDM
67	985	551753.593	236921.468	-360.73	EDM
68	986	551758.236	236925.104	-360.326	EDM
69	987	551799.712	236950.015	-358.315	EDM
70	988	551746.52	236912.428	-355.575	EDM
71	989	551751.345	236908.862	-356.318	EDM
72	990	551823.407	236969.228	-355.985	EDM
73	991	551861.742	236991.095	-355.349	EDM
74	992	551999.405	237131.235	-355.717	EDM
75	993	552003.242	237129.284	-354.537	EDM
76	994	552005.809	237130.717	-354.117	EDM
77	995	552058.118	237190.968	-353.477	EDM
78	996	552058.361	237193.121	-354.011	EDM
79	997	552055.855	237196.624	-355.558	EDM
80	999	552325.613	237392.581	-348.719	EDM
81	1000	552371.989	237413.846	-344.841	EDM

82	1001	552378.396	237410.07	-342.911	EDM
83	1002	552366.768	237411.817	-344.703	EDM
84	1003	552489.439	237468.592	-341.543	EDM
85	1004	552489.142	237472.85	-342.022	EDM
86	1005	552362.558	237408.834	-344.287	EDM
87	1006	552363.673	237408.117	-344.813	EDM
88	1007	552371.591	237413.812	-344.821	EDM
89	1008	552373.171	237413.798	-344.327	EDM
90	1009	552373.986	237412.534	-344.223	EDM
91	1010	552373.805	237408.647	-343.011	EDM
92	1011	552375.355	237407.686	-342.599	EDM
93	1012	552377.436	237407.826	-342.307	EDM
94	1013	552378.648	237410.254	-342.89	EDM
95	1014	552488.24	237471.545	-342.083	EDM
96	1015	552492.1	237472.126	-341.915	EDM
97	1016	552494.865	237472.616	-342.189	EDM
98	1017	552513.571	237488.707	-342.063	EDM
99	1018	552518.464	237491.778	-341.385	EDM
100	1019	552519.317	237492.913	-341.4	EDM
101	1020	552547.371	237490.309	-339.641	EDM
102	1021	552550.77	237491.517	-339.636	EDM
103	1022	552554.456	237490.693	-339.354	EDM
104	1023	552553.113	237493.937	-340.346	EDM
105	1024	552555.307	237495.329	-341.247	EDM
106	1025	552666.497	237499.853	-341.163	EDM
107	1026	552699.073	237510.821	-339.311	EDM
108	1027	552698.771	237515.291	-342.532	EDM
109	1028	552705.798	237522.2	-342.029	EDM
110	1029	552719.749	237537.31	-343.212	EDM
111	1030	552527.702	237489.667	-340.163	EDM
112	1031	552530.931	237484.419	-339.442	EDM
113	1032	552532.877	237481.57	-338.901	EDM
114	1033	552597.85	237501.086	-339.931	EDM
115	1034	552601.548	237495.697	-340.352	EDM
116	1035	552606.327	237491.044	-341.216	EDM
117	1036	552620.459	237494.563	-342.564	EDM
118	1037	552624.956	237491.732	-343.386	EDM
119	1038	552647.347	237499.761	-343.049	EDM
120	1039	552657.919	237498.38	-340.177	EDM
121	1040	552674.57	237508.293	-343.151	EDM
122	1041	552692.258	237512.703	-342.921	EDM
123	1042	552699.597	237511.002	-339.228	EDM
124	1043	552700.842	237517.331	-342.763	EDM

125	1044	552713.726	237534.273	-344.036	EDM
126	1045	552724.66	237534.255	-342.383	EDM
127	1046	552746.004	237552.868	-342.196	EDM
128	1047	552763.865	237555.381	-342.362	EDM
129	1048	552801.706	237559.37	-341.455	EDM
130	1049	552870.215	237550.287	-337.183	EDM
131	1050	552826.828	237567.747	-345.507	EDM
132	1051	552831.009	237562.906	-345.298	EDM
133	1052	552840.834	237526.322	-338.459	EDM
134	1053	552868.218	237562.352	-339.662	EDM
135	1054	552879.857	237571.547	-339.521	EDM
136	1055	553222.572	237714.454	-355.751	EDM
137	1056	552804.775	237553.975	-341.225	EDM
138	1057	552831.859	237561.173	-345.073	EDM
139	1058	553030.181	237611.582	-338.734	EDM
140	1059	553173.074	237686.286	-361.476	EDM
141	1060	553176.534	237679.311	-356.175	EDM
142	1061	553190.105	237643.734	-337.443	EDM
143	1062	553222.697	237714.689	-355.648	EDM
144	1063	553282.521	237726.743	-350.78	EDM
145	1064	553204.123	237706.563	-359.041	EDM
146	1065	553205.92	237704.763	-358.81	EDM
147	1066	553223.626	237715.022	-355.983	EDM
148	1067	553242.781	237721.986	-356.421	EDM
149	1068	553284.605	237727.279	-350.526	EDM
150	1069	553253.284	237763.522	-374.722	EDM
151	1070	553309.424	237751.001	-356.426	EDM
152	1071	553318.203	237751.201	-354.735	EDM
153	1072	553335.617	237767.461	-362.986	EDM
154	1073	553340.573	237766.872	-362.48	EDM
155	1074	553353.114	237759.132	-355.277	EDM
156	1075	553355.633	237757.94	-355.43	EDM
157	1076	553359.506	237756.192	-355.359	EDM
158	1077	553365.895	237750.971	-351.248	EDM
159	1078	553368.257	237751.653	-351.283	EDM
160	1079	553376.559	237755.179	-352.09	EDM
161	1080	553378.886	237753.742	-351.459	EDM
162	1081	553403.186	237741.278	-343.291	EDM
163	1082	553413.216	237741.715	-342.548	EDM
164	1083	553419.96	237743.146	-342.099	EDM
165	1084	553427.748	237738.163	-340.531	EDM
166	1085	553439.066	237738.026	-339.93	EDM
167	1086	553346.976	237762.919	-361.639	EDM

168	1087	553424.143	237741.441	-341.524	EDM
169	1088	553426.798	237738.002	-340.512	EDM
170	1089	553434.879	237736.969	-339.557	EDM
171	1090	553445.099	237738.275	-340.179	EDM
172	1091	553450.21	237733.948	-339.58	EDM
173	1092	553555.118	237731.653	-333.28	EDM
174	1093	553560.604	237733.355	-332.716	EDM
175	1094	553582.901	237746.088	-335.332	EDM
176	1095	553612.57	237734.658	-328.799	EDM
177	1096	553632.881	237735.135	-328.423	EDM
178	1097	553620.471	237735.428	-328.329	EDM
179	1098	553630.595	237735.497	-328.753	EDM
180	1099	553633.232	237735.027	-328.362	EDM
181	1100	553673.754	237742.353	-330.677	EDM
182	1101	553762.169	237742.214	-334.088	EDM
183	1102	553764.759	237742.241	-333.941	EDM
184	1103	553771.228	237743.706	-334.318	EDM
185	1104	553793.488	237752.6	-335.426	EDM
186	1105	553801.31	237754.869	-335.555	EDM
187	1106	553810.91	237756.586	-335.598	EDM
188	1107	553764.16	237741.069	-333.808	EDM
189	1108	553771.352	237743.731	-334.332	EDM
190	1109	553797.731	237752.083	-335.869	EDM
191	1110	553800.896	237754.671	-335.522	EDM
192	1111	553805.563	237754.26	-335.112	EDM
193	1112	553811.791	237756.198	-335.449	EDM
194	1113	553823.573	237747.217	-333.069	EDM
195	1114	553831.941	237753.734	-334.473	EDM
196	1115	553872.366	237767.343	-340.575	EDM
197	1116	553913.668	237747.025	-323.454	EDM
198	1117	553950.747	237774.655	-344.075	EDM
199	1118	553952.695	237777.024	-345.75	EDM
200	1119	553957.205	237776.643	-345.651	EDM
201	1120	553964.559	237780.717	-346.922	EDM
202	1121	553967.366	237787.317	-346.439	EDM
203	1122	553971.41	237791.642	-347.023	EDM
204	1123	553948.287	237818.503	-372.365	EDM
205	1124	553918.482	237805.508	-367.568	EDM
206	1125	553924.376	237792.897	-358.549	EDM
207	1126	553945.926	237816.099	-372.255	EDM
208	1127	553950.914	237817.704	-371.903	EDM
209	1128	553953.582	237819.54	-371.85	EDM
210	1129	553952.059	237744.213	-322.569	EDM

211	1130	554027.711	237810.335	-344.631	EDM
212	1131	554032.452	237810.962	-344.457	EDM
213	1132	554085.706	237827.887	-345.332	EDM
214	1133	554097.23	237829.63	-346.309	EDM
215	1134	553967.202	237857.771	-382.369	EDM
216	1135	553974.311	237857.629	-382.495	EDM
217	1136	553978.338	237860.329	-383.576	EDM
218	1137	554039.419	237806.113	-342.592	EDM
219	1138	554080.393	237869.448	-386.063	EDM
220	1139	554097.028	237869.204	-385.448	EDM
221	1140	554111.28	237869.983	-385.359	EDM
222	1141	554142.903	237867.623	-384.206	EDM
223	1142	554158.105	237868.014	-384.371	EDM
224	1143	554033.68	237810.931	-344.083	EDM
225	1144	554066.54	237820.585	-343.385	EDM
226	1145	554095.515	237829.877	-346.329	EDM
227	1146	554237.301	237860.647	-382.001	EDM
228	1147	554264.725	237861.851	-380.504	EDM
229	1148	554329.221	237855.898	-381.957	EDM
230	1149	554389.766	237856.094	-382.335	EDM
231	1150	554462.348	237849.606	-382.334	EDM
232	1151	554357.579	237805.027	-343.259	EDM
233	1152	554371.896	237806.901	-343.138	EDM
234	1153	554387.107	237810.236	-343.772	EDM
235	1154	554397.691	237813.764	-344.379	EDM
236	1155	554443.371	237829.708	-352.153	EDM
237	1156	554413.313	237857.635	-382.721	EDM
238	1157	554464.29	237849.345	-382.358	EDM
239	1158	554555.968	237831.246	-382.359	EDM
240	1159	554566.933	237834.413	-382.967	EDM
241	1160	554581.815	237834.632	-382.149	EDM
242	1161	554600.44	237828.545	-380.768	EDM
243	1162	554703.674	237806.052	-379.988	EDM
244	1163	554718.758	237805.267	-379.997	EDM
245	1164	554735.867	237805.875	-380.718	EDM
246	1165	554499.97	237831.92	-357.509	EDM
247	1166	554341.241	237806.241	-342.622	EDM
248	1167	554437.259	237828.667	-350.797	EDM
249	1168	554447.654	237827.844	-349.703	EDM
250	1169	554486.559	237823.761	-351.49	EDM
251	1170	554504.149	237820.367	-350.917	EDM
252	1171	554533.483	237818.515	-350.016	EDM
253	1172	554549.76	237824.252	-354.609	EDM

254	1173	554552.275	237817.66	-351.795	EDM
255	1174	554572.652	237817.926	-352.639	EDM
256	1175	554608.296	237816.4	-352.956	EDM
257	1176	554625.315	237809.992	-351.735	EDM
258	1177	554715.859	237787.28	-344.525	EDM
259	1178	554737.084	237780.666	-342.927	EDM
260	1179	554854.492	237717.372	-339.676	EDM
261	1180	554774.173	237766.238	-348.565	EDM
262	1181	554718.967	237787.289	-344.634	EDM
263	1182	554737.386	237778.701	-342.91	EDM
264	1183	554780.268	237759.182	-350.522	EDM
265	1184	554789.802	237759.063	-351.903	EDM
266	1185	554812.615	237736.311	-340.91	EDM
267	1186	554838.09	237719.163	-339.25	EDM
268	1187	554864.938	237707.79	-340.31	EDM
269	1188	554882.672	237686.134	-337.527	EDM
270	1189	554894.182	237667.648	-334.839	EDM
271	1190	554914.466	237650.205	-325.646	EDM
272	1191	554936.593	237629.732	-317.8	EDM
273	1192	554954.112	237630.842	-327.148	EDM
274	1193	554975.14	237614.424	-326.278	EDM
275	1194	555003.73	237597.044	-320.002	EDM
276	1195	555019.327	237597.997	-321.285	EDM
277	1196	555033.988	237584.234	-317.084	EDM
278	1197	555105.618	237524.202	-317.429	EDM
279	1198	555145.453	237510.934	-325.517	EDM
280	1199	555180.695	237500.439	-339.455	EDM
281	1200	555222.245	237478.038	-342.485	EDM
282	1201	555292.969	237426.55	-339.311	EDM
283	1202	555316.642	237432.49	-338.834	EDM
284	1203	555305.253	237419.12	-339.035	EDM
285	1204	555289.12	237426.771	-339.537	EDM
286	1205	555244.838	237468.368	-342.082	EDM
287	1206	555226.948	237486.003	-341.949	EDM
288	1207	555195.338	237491.193	-339.699	EDM
289	1208	555173.117	237497.554	-328.513	EDM
290	1209	555159.274	237502.991	-325.663	EDM
291	1210	555145.998	237511.016	-325.802	EDM
292	1211	555108.195	237521.07	-317.452	EDM
293	1212	555080.934	237547.884	-317.255	EDM
294	1213	555058.134	237568.431	-316.896	EDM
295	1214	555024.341	237590.218	-317.308	EDM
296	1215	555019.624	237597.803	-321.347	EDM

297	1216	555021.852	237617.439	-335.995	EDM
298	1217	554885.444	237684.356	-337.358	EDM
299	1218	555247.65	237466.147	-341.917	EDM
300	1219	555269.921	237445.31	-341.091	EDM
301	1220	555275.545	237442.15	-340.667	EDM
302	1221	555279.214	237437.615	-340.61	EDM
303	1222	555279.925	237437.97	-339.783	EDM
304	1223	555287.781	237427.7	-339.727	EDM
305	1224	555283.812	237432.972	-339.814	EDM
306	1225	555343.554	237464.783	-372.947	EDM
307	1226	555345.411	237461.151	-372.881	EDM
308	1227	555356.341	237461.207	-374.649	EDM
309	1228	555360.036	237455.639	-374.463	EDM
310	1229	555365.569	237445.424	-374.187	EDM
311	1230	555375.014	237439.438	-374.278	EDM
312	1231	555384.795	237430.46	-373.86	EDM
313	1232	555398.034	237419.756	-376.458	EDM
314	1233	555406.318	237410.814	-376.491	EDM
315	1234	555408.288	237408.703	-374.959	EDM
316	1235	555410.518	237408.918	-374.857	EDM
317	1236	555414.074	237401.99	-371.699	EDM
318	1237	555421.914	237396.274	-370.609	EDM
319	1238	555441.677	237395.789	-377.442	EDM
320	1239	555446.117	237394.21	-377.854	EDM
321	1240	555427.539	237388.274	-353.398	EDM
322	1241	555424.582	237388.996	-353.056	EDM
323	1242	555423.758	237391.656	-355.078	EDM
324	1243	555355.722	237432.996	-348.556	EDM
325	1244	555351.388	237436.408	-346.773	EDM
326	1245	555432.463	237375.056	-351.404	EDM
327	1246	555433.546	237371.383	-351.207	EDM
328	1247	555477.956	237353.756	-354.24	EDM
329	1248	555482.157	237352.176	-354.961	EDM
330	1249	555486.704	237349.097	-355.315	EDM
331	1250	555488.034	237346.775	-356.194	EDM
332	1251	555502.73	237346.423	-360.07	EDM
333	1252	555505.831	237345.113	-360.356	EDM
334	1253	555509.573	237342.845	-360.474	EDM
335	1254	555512.981	237339.21	-360.638	EDM
336	1255	555478.26	237353.883	-354.435	EDM
337	1256	555486.834	237348.904	-355.378	EDM
338	1257	555489.714	237344.891	-356.391	EDM
339	1258	555505.881	237345.125	-360.389	EDM

340	1259	555510.749	237342.18	-360.577	EDM
341	1260	555513.541	237337.811	-360.642	EDM
342	1261	555515.766	237334.649	-360.711	EDM
343	1262	555516.864	237332.401	-360.748	EDM
344	1263	555518.799	237323.582	-360.822	EDM
345	1264	555519.015	237316.352	-360.578	EDM
346	1265	555517.171	237307.231	-358.815	EDM
347	1266	555518.664	237299.035	-354.918	EDM
348	1267	555805.955	237093.405	-337.138	EDM
349	1268	555820.769	237104.147	-340.218	EDM
350	1269	555829.914	237101.084	-338.763	EDM
351	1270	555829.554	237104.355	-339.478	EDM
352	1271	555842.973	237117.981	-340.993	EDM
353	1272	555849.802	237132.537	-347.642	EDM
354	1273	555870.447	237158.712	-350.554	EDM
355	1274	555802.733	237096.575	-337.856	EDM
356	1275	555815.807	237100.008	-339.425	EDM
357	1276	555824.61	237105.376	-340.121	EDM
358	1277	555842.893	237117.955	-340.929	EDM
359	1278	555848.719	237131.547	-347.437	EDM
360	1279	555857.37	237143.225	-348.567	EDM
361	1280	555866.955	237156.765	-350.24	EDM
362	1281	555968.106	237166.553	-352.82	EDM
363	1282	555996.541	237175.177	-350.868	EDM
364	1283	556011.706	237181.274	-352.861	EDM
365	1284	556036.301	237175.387	-351.911	EDM
366	1285	556051.081	237182.609	-353.122	EDM
367	1286	555940.094	237156.068	-348.165	EDM
368	1287	555972.674	237167.363	-349.988	EDM
369	1	553349.954	236216.12	-226.973	EDM
370	2	553352.693	236217.233	-226.723	EDM
371	3	553640.298	236258.455	-232.405	EDM
372	4	553267.311	236202.312	-233.382	EDM
373	5	553188.558	236194.334	-230.769	EDM
374	141	554064.538	237665.585	-296.399	EDM
375	142	554063.178	237657.243	-295.37	EDM
376	143	554055.418	237620.679	-293.394	EDM
377	144	554057.74	237618.23	-293.1	EDM
378	145	554058.316	237607.58	-296.511	EDM
379	146	554064.158	237605.972	-296.144	EDM
380	147	554068.081	237607.038	-296.038	EDM
381	148	554088.549	237615.094	-294.019	EDM
382	149	554089.888	237617.951	-294.134	EDM

383	150	554093.152	237639.769	-294.465	EDM
384	151	554095.969	237644.957	-295.04	EDM
385	152	554098.19	237646.441	-295.169	EDM
386	153	554099.32	237650.754	-296.92	EDM
387	154	554099.803	237656.292	-297.723	EDM
388	155	554099.97	237659.041	-298.218	EDM
389	156	554081.758	237682.056	-308.962	EDM
390	157	554216.094	237646.527	-294.695	EDM
391	158	554216.614	237644.947	-294.428	EDM
392	159	554216.51	237643.882	-294.242	EDM
393	160	554215.376	237640.542	-293.882	EDM
394	161	554217.159	237638.197	-294.258	EDM
395	162	554219.508	237633.537	-294.456	EDM
396	163	554221.481	237631.606	-294.652	EDM
397	164	554222.453	237630.638	-294.094	EDM
398	165	554364.114	237664.949	-319.322	EDM
399	166	554352.69	237644.527	-313.809	EDM
400	167	554332.59	237644.559	-317.5	EDM
401	168	554327.013	237634.066	-307.448	EDM
402	169	554328.416	237608.586	-292.895	EDM
403	170	554325.35	237608.578	-293.483	EDM
404	231	554363.304	237666.669	-319.533	EDM
405	232	554364.199	237664.738	-319.305	EDM
406	233	554365.261	237663.482	-319.102	EDM
407	234	554348.731	237630.954	-297.605	EDM
408	235	554347.699	237628.109	-296.522	EDM
409	236	554347.252	237625.695	-295.756	EDM
410	237	554346.72	237622.869	-295.096	EDM
411	238	554346.519	237620.585	-294.824	EDM
412	239	554345.284	237617.914	-294.276	EDM
413	240	554340.936	237612.949	-293.073	EDM
414	241	554328.522	237576.45	-291.204	EDM
415	242	554327.751	237574.44	-290.849	EDM
416	243	554327.209	237572.787	-290.649	EDM
417	244	554325.982	237570.211	-290.541	EDM
418	245	554324.702	237563.781	-292.543	EDM
419	246	554320.458	237562.295	-292.614	EDM
420	247	554313.595	237561.293	-294.129	EDM
421	248	554313.009	237560.345	-294.279	EDM
422	249	554296.539	237575.103	-291.281	EDM
423	250	554297.378	237577.168	-290.255	EDM
424	251	554299.085	237579.268	-289.886	EDM
425	252	554300.301	237581.212	-290.153	EDM

426	253	554302.048	237586.435	-290.228	EDM
427	254	554301.96	237589.769	-292.032	EDM
428	255	554309.274	237613.697	-291.708	EDM
429	256	554308.865	237621.566	-292.737	EDM
430	257	554310.052	237624.303	-292.998	EDM
431	258	554310.906	237627.403	-293.845	EDM
432	259	554310.753	237629.709	-294.142	EDM
433	260	554312.096	237630.146	-294.258	EDM
434	261	554313.238	237633.575	-294.985	EDM
435	262	554313.933	237638.196	-296.191	EDM
436	263	554301.312	237561.972	-293.87	EDM
437	264	554301.272	237563.75	-293.739	EDM
438	265	554302.323	237565.388	-294.545	EDM
439	266	554302.395	237566.54	-294.504	EDM
440	267	554300.708	237570.851	-294.014	EDM
441	268	554299.585	237573.016	-294.331	EDM
442	269	554297.348	237577.147	-290.265	EDM
443	270	554298.304	237578.764	-290.389	EDM
444	271	554299.374	237580.158	-289.936	EDM
445	272	554300.828	237581.84	-290.218	EDM
446	273	554301.586	237584.055	-290.01	EDM
447	274	554302.252	237587.126	-290.546	EDM
448	275	554301.981	237590.103	-291.861	EDM
449	6	552709.4811	236224.939	-235.5	cave
450	P38	552793.2166	236497.948	-239.512	cave
451	CA3	553335.6947	237196.498	-280.735	cave
452	MAT13A	554402.5815	237608.699	-293.009	cave
453	MAT13B	554399.216	237607.175	-292.699	cave
454	MAT13C	554396.93	237607.006	-292.849	cave
455	MAT13D	554394.5593	237609.715	-293.409	cave
456	MAT13E	554392.5273	237612.424	-293.389	cave
457	MAT13F	554390.6646	237613.525	-293.609	cave
458	MAT13G	554390.072	237614.626	-294.489	cave
459	MAT12A	554299.9074	237645.997	-296.035	cave
460	MAT12B	554299.1031	237644.727	-295.305	cave
461	MAT11A	554187.9144	237680.943	-303.666	cave
462	MAT11B	554190.4544	237679.165	-305.476	cave
463	MAT11C	554190.7719	237675.99	-305.666	cave
464	MAT10A	554174.0391	237659.023	-296.376	cave
465	MAT10B	554174.0338	237653.382	-294.876	cave
466	MAT10C	554174.1503	237646.069	-294.446	cave
467	MAT10D	554174.4017	237641.333	-293.076	cave
468	MAT10E	554171.6412	237635.686	-293.286	cave

469	MAT10F	554169.5097	237636.471	-293.566	cave
470	MAT10G	554168.3914	237638.6	-290.136	cave
471	MAT10H	554169.2152	237654.629	-292.276	cave
472	MAT10I	554166.9662	237655.777	-293.226	cave
473	MAT10J	554167.5703	237659.006	-293.876	cave
474	MAT9A	554153.3781	237676.913	-303.919	cave
475	MAT9B	554154.0131	237672.605	-302.879	cave
476	MAT9C	554155.8652	237672.023	-303.059	cave
477	MAT3	553727.3434	237673.849	-309.04	cave
478	MAT2	553848.1365	237688.081	-309.879	cave
479	P46	554202.7425	237728.161	-326.379	GPS-RTK
480	MAT15A1	554171.9356	237757.012	-338.429	caves
481	MAT15A2	554169.2442	237757.214	-338.679	caves
482	MAT15A3	554166.3148	237758.721	-339.079	caves
483	MAT15A4	554161.8274	237759.856	-339.029	caves
484	MAT15A5	554160.659	237762.904	-339.639	caves
485	MAT15A6	554157.0691	237766.493	-340.329	caves
486	MAT15A7	554158.7625	237768.864	-340.469	caves
487	MAT15A8	554164.4182	237770.744	-340.439	caves
488	MAT15A9	554166.9921	237768.627	-340.259	caves
489	MAT15A10	554172.3261	237767.679	-339.999	caves
490	MAT15A11	554175.7636	237766.578	-339.799	caves
491	MAT16	554255.4245	237790.604	-337.186	caves
492	MAT17	554383.9784	237715.162	-317.489	caves
493	MAT18	554382.9116	237708.829	-315.225	caves
494	MAT19A1	554561.6687	237799.467	-345.409	caves
495	MAT19A2	554560.7543	237807.426	-348.599	caves
496	MAT19A3	554562.6339	237811.185	-354.349	caves
497	MAT20A	554049.9169	237743.788	-327.15	caves
498	MAT20B	554071.4392	237759.248	-339.77	caves
499	MAT20C	554073.522	237769.527	-345.65	caves
500	MAT5	554225.173	237550.528	-285.248	caves
501	MAT21	554038.5606	237196.326	-266.733	caves
502	MAT22	554010.2733	237035.591	-260.473	caves
503	MAT23	553812.2375	237079.059	-265.864	caves
504	MAT25	553673.4851	237137.458	-270.21	caves
505	MAT26	553292.4325	237124.917	-278.751	caves
506	MAT30	552868.3816	237036.904	-283.023	caves
507	MAT28	553236.6544	237038.736	-271.908	caves
508	MAT32	553409.8964	237574.817	-302.847	caves
509	MAT33A	553476.1482	237624.409	-312.563	caves
510	MAT33B	553478.3834	237620.091	-312.643	caves
511	MAT33C	553478.4342	237615.502	-311.433	caves

512	MAT33D	553474.8612	237604.428	-308.863	caves
513	MAT33E	553469.7982	237592.71	-307.383	caves
514	MAT33F	553478.0447	237585.953	-306.553	caves
515	MAT34	553058.4549	237547.851	-320.667	caves
516	MAT35	552891.7882	237449.138	-322.314	caves
517	MAT36	552484.128	237414.088	-337.345	caves
518	MAT37	551176.9404	236056.849	-318.004	caves
519	MAT38	551889.107	235970.5	-317.676	caves
520	MAT14	553414.4943	237486.554	-299.127	caves

Previous research had implied that the highest velocity rising zone in the diapir should be under the thickest section of caprock. The present research shows that the fastest rising zone of the diapir is not necessarily lying beneath the thickest section of caprock. This implies that the thickness of the caprock is affected not only by the rising rate of the diapir but by other processes as well such as collapsing.

The minimal uplift rate of the Southern part of Mount Sedom throughout the Holocene is 11 ± 0.03 mm/yr. Furthermore, the Northern and Southern parts of the mountain are rising at the same rate. This result coincides with the results of some previous studies. On the other hand, the displacement gradient and the displacement gradient rate that were measured along the entire Southern part of the mountain contradict those previous studies, measuring lower values than the values measured previously. Furthermore, the displacement gradient rate that was measured along the Eastern side of the mountain measured at higher values than measured previously. This data supports the hypothesis that the rate of a rising diapir decreases over time.

Abstract

Despite the numerous studies examining salt tectonics, relatively little is known regarding the internal movements of the salt units that build salt extrusions such as the Mount Sedom salt diapir. In this study we focus on the recent deformation processes of southern Mount Sedom to try and define its internal movements.

The top of the rising diapir underwent dissolution by ground- or lake-water and the accumulated residual hardly-soluble matter formed a caprock. The flat, near-horizontal, contact between the almost-vertical salt layers and the caprock is referred to as the 'Salt Mirror'. Since fossilization ~14 ka ago, the Salt Mirror has undergone distortion and tilting representing the ongoing internal movement of the salt units. Accordingly, the Salt Mirror can be used as a proxy for the deformation processes that have taken place within, and between, the different salt units since the early Holocene. Surveying the Salt Mirror surface from outcrops and caves throughout the region has enabled us to draw a structural map of the Salt Mirror. The data from the caves cover ~60% of the research area. This data is within a meter of accuracy and was obtained by: GPS-RTK, EDM &MDL. The resulting structural map of the Salt Mirror is analyzed and cross-referenced with data from earlier studies. More specifically, we test whether the topography of the Salt Mirror is similar to that of Mount Sedom surface. Point elevation data are plotted on a diagram looking for a linear fit confirming structural similarity. Finally, we apply an older method of measuring the uplift rate of the mountain using our new and more accurate data.

The deformation of the 'Salt Mirror' indicates that the diapir rises as a telescopic antenna which is influenced by the subsiding Dead Sea basin in the east. The combined vertical shear stress and laminar flow of the rising salt result in a non-symmetrical shaped antennalike elongated ridge. This telescopic behavior of the rising diapir might be relevant also for the internal deformation in other salt diapirs around the world.

The structure of the Salt Mirror and the structure of the diapir upper surface are strongly correlated in most areas. This is clearly shown by the a-symmetrical bell shape of the upper surface that lies, respectively, above the a-symmetrical antenna shaped 'Salt Mirror'.

The deformation of the 'Salt Mirror' and the uplift of Mount Sedom salt diapir, Israel

Thesis for the Degree of Master of Science submitted by:

Elchanan Zucker

Under the supervision of: Prof. Amos Frumkin Prof. Amotz Agnon Prof. Ram Weinberger

December 2013

Department of Geology Institute of Earth Sciences Faculty of Mathematics and Natural Sciences The Hebrew University of Jerusalem